Baryon Number Violation and Leptophobic Dark Matter

Ruihao Li

CERCA Friday Seminar Oct. 19, 2018

Based on arXiv: I8I0.06646
In collaboration with Pavel Fileviez Péres, Elliot Golias, Clara Murgui

Baryon Asymmetry

Baryon excess:

$$
\eta_{b} \equiv \frac{n_{b}-n_{\bar{b}}}{n_{\gamma}} \simeq \frac{n_{b}}{n_{\gamma}} \simeq 6.05 \times 10^{-10}
$$

Sakharov Conditions

Let's assume that the Universe started out baryon-symmetric.
3 necessary conditions for baryogenesis: sakkraro 1967

- Baryon number violation $X \rightarrow Y+B$
- C - and CP -violation
$>\mathrm{C}$ conservation:

$$
\Gamma(X \rightarrow Y+B)=\Gamma(\bar{X} \rightarrow \bar{Y}+\bar{B})
$$

$>\mathrm{CP}$ conservation: $X \rightarrow q_{L} q_{L} \quad \bar{X} \rightarrow \bar{q}_{R} \bar{q}_{R}$

$$
\Gamma\left(X \rightarrow q_{L} q_{L}\right)+\Gamma\left(X \rightarrow q_{R} q_{R}\right)=\Gamma\left(\bar{X} \rightarrow \bar{q}_{L} \bar{q}_{L}\right)+\Gamma\left(\bar{X} \rightarrow \bar{q}_{R} \bar{q}_{R}\right)
$$

- Departure from thermal equilibrium

$$
\Delta E=m_{\text {matter }}-m_{\text {antimatter }}=0
$$

Baryon Number Violation

In the Standard Model (SM)

- Chiral anomaly: Adler 1969; Bell, Jackiw 1969
$\partial_{\mu} j_{B}^{\mu}=\frac{3}{64 \pi^{2}} \epsilon^{\alpha \beta \gamma \delta}\left(g_{2}^{2} W_{\alpha \beta}^{a} W_{\gamma \delta}^{a}+g_{1}^{2} B_{\alpha \beta} B_{\gamma \delta}\right) \neq 0$
- This anomaly is l-loop exact! \Rightarrow non-perturbative effect $S U(2)_{L} \times U(1)_{Y}$

$\Delta B=\int_{t_{i}}^{t_{f}} \mathrm{~d} t \int \mathrm{~d}^{3} x \partial_{\mu} j_{B}^{\mu}=3\left[n_{\mathrm{CS}}\left(t_{f}\right)-n_{\mathrm{CS}}\left(t_{i}\right)\right]$
$\Gamma_{\mathrm{sph}}\left(T \gtrsim m_{h}\right) \sim\left(\frac{g_{2}^{2}}{4 \pi}\right)^{5} T^{4}$

Baryon Number Violation

However, baryogenesis in the SM suffers from 2 issues:

- CP violations coming from the CKM matrix is insufficient Gavela, Hernandez, Orloff, Pene, Quimbay I994; Huet, Sather 1995
- Cannot accommodate a large enough departure from equilibrium - no ${ }^{\text {st }}$ order phase transition
Kajantie, Laine, Rummukainen, Shaposhnikov 1996; Csikor, Fodor, Heitger 1998

Beyond the SM

- Explicit breaking of B
- GUTs: SU(5), SO(IO), etc.

Dimension-6 effective operators: e.g. $\frac{Q_{L} Q_{L} Q_{L} \ell_{L}}{\Lambda_{\text {GUT }}^{2}}$
Proton decay: $\tau_{p} \gtrsim 8.2 \times 10^{33}$ years $\Longrightarrow \Lambda_{\text {GUT }} \gtrsim 10^{15-16} \mathrm{GeV}$

- MSSM: impose a discrete symmetry "R-parity" $R \equiv(-1)^{3(B-L)+2 s}$

Still dimension-5 effective operators: e.g. $\frac{\hat{Q} \hat{Q} \hat{Q} \hat{L}}{\Lambda}$

- Spontaneous breaking of B
- B as a local symmetry: $\mathrm{U}(\mathrm{I})_{\mathrm{B}} \Rightarrow$ low-scale baryon number violation

$U(I)_{B}$ - Anomaly Cancellation

- Gauge group: $S U(3)_{C} \otimes S U(2)_{L} \otimes U(1)_{Y} \otimes U(1)_{B}$
- Baryonic anomalies:

$$
\begin{aligned}
& \mathcal{A}_{1}\left(S U(3)^{2} \otimes U(1)_{B}\right) \\
& \mathcal{A}_{2}\left(S U(2)^{2} \otimes U(1)_{B}\right) \\
& \mathcal{A}_{3}\left(U(1)_{Y}^{2} \otimes U(1)_{B}\right) \\
& \mathcal{A}_{4}\left(U(1)_{Y} \otimes U(1)_{B}^{2}\right) \\
& \mathcal{A}_{5}\left(U(1)_{B}\right) \\
& \mathcal{A}_{6}\left(U(1)_{B}^{3}\right) \\
& \mathcal{A}_{2}^{S M}=-\mathcal{A}_{3}^{S M}=3 / 2 \neq 0
\end{aligned}
$$

We need to introduce additional particles to make these anomalies vanish.

Particle Content

- Anomaly cancellation requires:

$$
\begin{aligned}
& Y_{2}^{2}+Y_{3}^{2}-2 Y_{1}^{2}=0 \\
& B_{1}-B_{2}=-3
\end{aligned}
$$

- Let's investigate: $Y_{1}=-1 / 2, Y_{2}=-1, Y_{3}=0$
- Focus on

$$
\begin{aligned}
& \mathcal{L}_{B} \ni i \bar{\chi}_{L} \gamma^{\mu}\left(\partial_{\mu}-B_{2} Z_{\mu}^{B}\right) \chi_{L}+ \\
& i \bar{\chi}_{R} \gamma^{\mu}\left(\partial_{\mu}-B_{1} Z_{\mu}^{B}\right) \chi_{R}+ \\
& \lambda_{\chi} \bar{\chi}_{R} \chi_{L} S_{B}+\text { h.c. }
\end{aligned}
$$

Fields $\quad S U(3)_{C} \quad S U(2)_{L} \quad U(1)_{Y} \quad U(1)_{B}$

$\ell_{L}^{i}=\binom{\nu_{L}^{i}}{e_{L}^{i}}$	$\mathbf{1}$	$\mathbf{2}$	$-\frac{1}{2}$	0
e_{R}^{i}	$\mathbf{1}$	$\mathbf{1}$	-1	0
$Q_{L}=\binom{u_{L}^{i}}{d_{L}^{L}}$	$\mathbf{3}$	$\mathbf{2}$	$\frac{1}{6}$	$\frac{1}{3}$
u_{R}^{i}	$\mathbf{3}$	$\mathbf{1}$	$\frac{2}{3}$	$\frac{1}{3}$
d_{R}^{i}	$\mathbf{3}$	$\mathbf{1}$	$-\frac{1}{3}$	$\frac{1}{3}$
H	$\mathbf{1}$	$\mathbf{2}$	$\frac{1}{2}$	0
$\Psi_{L}=\binom{\Psi_{L}^{0}}{\Psi_{L}^{\frac{1}{L}}}$	$\mathbf{1}$	$\mathbf{2}$	Y_{1}	B_{1}
$\Psi_{R}=\binom{\Psi_{R}^{0}}{\Psi_{R}^{\frac{1}{R}}}$	$\mathbf{1}$	$\mathbf{2}$	Y_{1}	B_{2}
η_{R}	$\mathbf{1}$	$\mathbf{1}$	Y_{2}	B_{1}
η_{L}	$\mathbf{1}$	$\mathbf{1}$	Y_{2}	B_{2}
χ_{R}	$\mathbf{1}$	$\mathbf{1}$	Y_{3}	B_{1}
χ_{L}	$\mathbf{1}$	$\mathbf{1}$	Y_{3}	B_{2}
S_{B}	$\mathbf{1}$	$\mathbf{1}$	0	-3

Higgs Sector

- Spontaneous symmetry breaking
- Scalar potential:

$$
V=-\mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2}-\mu_{B}^{2} S_{B}^{\dagger} S_{B}+\lambda_{B}\left(S_{B}^{\dagger} S_{B}\right)^{2}+\lambda_{H B}\left(H^{\dagger} H\right)\left(S_{B}^{\dagger} S_{B}\right)
$$

- SSB: $H \rightarrow \frac{1}{\sqrt{2}}\binom{0}{v_{0}+h_{0}}, \quad S_{B} \rightarrow \frac{1}{\sqrt{2}}\left(v_{B}+h_{B}\right)$
- DM \& gauge boson masses: $\quad M_{\chi}=\frac{\lambda_{\chi} v_{B}}{\sqrt{2}} \quad M_{Z_{B}}=3 g_{B} v_{B}$
- Higgs mixing
- Physical Higgses (mass eigenstates)

$$
\binom{h_{1}}{h_{2}}=\left(\begin{array}{cc}
\cos \theta_{B} & \sin \theta_{B} \\
\cos \theta_{B} & -\sin \theta_{B}
\end{array}\right)\binom{h_{0}}{h_{B}}
$$

- Mixing angle experimentally constrained by the SM Higgs signal strength: $\theta_{B} \leq 0.36 \quad$ arXiv:1606.02266 [hep-ex]

Leptophobic Dark Matter

- Let's fix the baryon numbers for the DM candidate:

$$
\begin{aligned}
& B \equiv B_{1}+B_{2}=-1, B_{1}-B_{2}=-3 \\
\Rightarrow & B_{1}=-2, B_{2}=1
\end{aligned}
$$

- So we have a Dirac fermion $\chi=\chi_{L}+\chi_{R}$!
- And we have three mediators Z_{B}, h_{2}, h_{1} (assuming non-zero Higgs mixing) that allow the dark sector to "talk" to the SM sector.

- Free parameters of the theory:
$\left\{M_{\chi}, M_{Z_{B}}, M_{h_{2}}, g_{B}, \theta_{B}\right\} \quad \Rightarrow$ Constrain the $\cup(I)_{B}$ symmetry breaking scale by constraining properties of the DM

DM Relic Density

- Cosmological bound on the DM relic density (Planck):

$$
\Omega_{\mathrm{DM}} h^{2} \leq 0.1199 \pm 0.0027 \quad \text { arXiv: } 1303.5076 \text { [astro-ph.co] }
$$

- Relic density by solving the Boltzmann equation: Gondolo, Gelmini 1991

$$
\begin{aligned}
& \Omega_{\mathrm{DM}} h^{2}=\frac{1.07 \times 10^{9} \mathrm{GeV}^{-1}}{M_{\mathrm{Pl}}}\left(\int_{x_{f}}^{\infty} \mathrm{d} x \frac{g_{*}^{1 / 2}(x)\langle\sigma v\rangle(x)}{x^{2}}\right)^{-1} \\
& \langle\sigma v\rangle(x)=\frac{x}{8 M_{\chi}^{5} K_{2}^{2}(x)} \int_{4 M_{\chi}^{2}}^{\infty} \mathrm{d} s \sigma \times\left(s-4 M_{\chi}^{2}\right) \sqrt{s} K_{1}\left(\frac{x \sqrt{s}}{M_{\chi}}\right) \\
& x_{f} \equiv \frac{M_{\chi}}{T_{f}} \quad \begin{array}{l}
\text { DM annihilation cross section }
\end{array} \\
& \text { - model-dependent quantity! }
\end{aligned}
$$

Relic Density Constraint

Zero mixing: $\theta_{B}=0$

Maximal mixing: $\theta_{B}=0.36$
$\bar{\chi} \chi \rightarrow \bar{q} q, Z_{B} Z_{B}, Z_{B} h_{2}, h_{2} h_{2} \quad \bar{\chi} \chi \rightarrow \bar{q} q, Z_{B} Z_{B}, Z_{B} h_{i}, h_{i} h_{j}, W^{+} W^{-}, Z Z$
Take $M_{h_{2}}=1 \mathrm{TeV}$:

$$
(i, j=1,2)
$$

$$
g_{B}=0.3 \bullet g_{B}=0.5 \bullet g_{B}=1.0 \bullet g_{B}=1.5 \quad g_{B}=2.0
$$

Relic Density Constraint

Let's inspect the zero mixing case in a bit more detail.

$$
\bar{\chi} \chi \rightarrow Z_{B} Z_{B}, h_{2} h_{2}
$$

Perturbativity Constraint

Recall: $\quad M_{\chi}=\frac{\lambda_{\chi} v_{B}}{\sqrt{2}} \quad M_{Z_{B}}=3 g_{B} v_{B}$
Perturbativity: $\quad \lambda_{\chi}=\frac{3 \sqrt{2} g_{B} M_{\chi}}{M_{Z_{B}}} \leq 4 \pi$

Unitarity Constraint

- Unitarity of the S-matrix: $\quad S^{\dagger} S=1$
- Partial wave expansion on the scattering amplitude:

$$
\begin{aligned}
& f(\alpha \rightarrow \beta)=\sum_{J}(2 J+1) P_{J}(\cos \theta) a_{J}(\alpha \rightarrow \beta) \\
& \sigma(\alpha \rightarrow \beta)=\int \mathrm{d} \Omega|f(\alpha \rightarrow \beta)|^{2}=\sum_{J} \sigma_{J} \\
& \bar{\sigma}_{0} \leq \frac{4 \pi}{M_{\chi}^{2} v_{\mathrm{rel}}^{2}}
\end{aligned}
$$

Direct Detection

- DM-nucleon scattering:

$$
\sigma_{\chi N}^{\mathrm{SI}}=\frac{g_{B}^{2} M_{N}^{2} M_{\chi}^{2}}{4 \pi M_{h_{1}}^{4} M_{h_{2}}^{4} M_{Z_{B}}^{4} v_{0}^{2}\left(M_{\chi}+M_{N}\right)^{2}}\left[2 B g_{B} v_{0} M_{h_{1}}^{2} M_{h_{2}}^{2}+3 f_{N} M_{\chi} M_{N} M_{Z_{B}} \sin \left(2 \theta_{B}\right)\left(M_{h_{1}}^{2}-M_{h_{2}}^{2}\right)\right]^{2}
$$

Direct Detection

arXiv:I5I2.0750I [physics.ins-det] arXiv:I5I2.0750| [physics.ins-det]

Indirect Detection

- Look for gamma ray lines:
- DM direct annihilation into photons: loop suppressed
- DM annihilation to leptons or quarks, which produce secondary photons - most relevant channel: $\bar{\chi} \chi \rightarrow \bar{b} b$

arXiv:I 503.0264I [astro-ph.HE]

Baryon Number Violation Scale

$$
g_{B}=2 \quad \Longrightarrow \quad v_{B}=\frac{M_{Z_{B}}}{3 g_{B}} \sim 33 \mathrm{TeV}
$$

Summary

- A simple gauge theory for baryon number $U(I)_{B}$, where baryon number can be spontaneous broken at a low scale.
- The theory predicts the existence of a leptophobic (baryonic) dark matter candidate.
- Using the cosmological bounds on the relic density as well as the unitarity constraint, the baryon number symmetry breaking scale is below $\mathrm{O}\left(10^{2}\right) \mathrm{TeV}$.
- It can be tested in future collider experiments and predict different signatures in dark matter experiments.

Thank you!

