
QFT Summary

LATEX note by Ruihao Li

March 30, 2018



Contents

1 Special Relativity and Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Special relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Groups and representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The SO(3)and SU(2) groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Lorentz and Poincare Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The Lorentz group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Poincare group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Behavior of fields under the Poincare group . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Lagrangian and Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Relativistic fields: general properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Noether’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Classical Fields / One-Particle Wave Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Scalar field: The Klein-Gordon equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Spinor field: The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Massless vector field: The Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . 22

5 Canonical Quantization of Scalar Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Real scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Zero point energy and normal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Complex scalar fields and antiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Canonical Quantization of Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Quantization in the Coulomb gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Quantization in the Lorenz gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Canonical Quantization of Dirac Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1 Quantization with anti-commutation relations . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Spin-statistics relation and probabilities in QFT . . . . . . . . . . . . . . . . . . . . . . . 38

8 Interaction Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.1 Some examples of interacting theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.2 The interaction picture and the S-matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.3 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Feynman Diagrams and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.1 QED at S(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



9.2 QED at S(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Propagators and Summary of Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10.1 Fermion propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10.2 Photon propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.3 Summary of Feynman rules for QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.4 Causality in QFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



1 Special Relativity and Group Theory

1.1 Special relativity

Four vector notations:

xµ = (x0, xi) = (t,x)

xµ = (x0,−xi) = (t,−x)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)
∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
) (1.1)

Therefore, we have the followings:

s2 = xµx
µ = xµxµ = t2 − x2 − y2 − z2

∂2 = ∂µ∂
µ = ∂µ∂µ =

∂2

∂t2
−∇2

∂µx
ν = ∂µxν = δµν (∂µx

µ = ∂µxµ = 4)

(1.2)

We should think of them as inner products rather than vector multiplications.
Moreover, if ∆s2 < 0, the spatial separation is greater than the distance light travels and the interval is called
space-like. If ∆s2 > 0, the spatial separation is less than the distance light travels and the interval is called time-
like. If ∆s2 = 0, the spatial separation is equal to the distance light travels and the interval is called light-like.
We can introduce a symmetric metric tensor ηµν = ηνµ defined as

ηµν = ηµν =


1

−1

−1

−1

. (1.3)

Then we have
s2 = ηµνxµxν = ηµνx

µxν . (1.4)

Now we look for a set of linear transformations

x′µ = Λµνx
ν = Λµ0x

0 + Λµi x
i (1.5)

which are Lorentz invariant (i.e. preserving s2),

ηµν = ηµνx
′µx′ν = ηµνΛ

µ
ρΛ

ν
σx

ρxσ

= ηρσx
ρxσ.

(1.6)

Therefore, the condition for Λ to be Lorentz transformations is

ηρσ = ηµνΛ
µ
ρΛ

ν
σ, (1.7)

which can also be written as
η̂ = Λ̂T η̂Λ̂. (1.8)

Taking the determinant gives

det η̂ = det Λ̂T det η̂ det Λ̂

=⇒ det Λ̂T det Λ̂ =
(
det Λ̂

)2
= 1

=⇒ det Λ̂ = ±1.

(1.9)
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Proper Lorentz transformations: det Λ̂ = +1.
Improper Lorentz transformations: det Λ̂ = −1.
Consider the 00 component of Eq. (1.7),

1 = ηµνΛ
µ
0Λ

ν
0 =

(
Λ0
0

)2 − (Λi0)2
=⇒

∣∣Λ0
0

∣∣ > 1.
(1.10)

Orthochronous Lorentz transformations: Λ0
0 > 1.

Non-orthochronous Lorentz transformations: Λ0
0 6 −1.

In general, an object with one upper index, aµ is called a covariant vector, while the one with one lower index,
aµ is called a contravariant vector.

1.2 Groups and representations

Definition 1. A group G is a finite or infinite set of elements which, together with an operation of multiplication,
satisfies the following four fundamental properties:

1. Closure: ∀a, b ∈ G, ab ∈ G.

2. Associativity: ∀a, b, c ∈ G, (ab)c = a(bc).

3. Identity: ∃!e ∈ G such that ∀a ∈ G, ea = ae = a.

4. Inverse: ∀a ∈ G, ∃!a−1 ∈ G such that aa−1 = e.

Definition 2. A representation ρ of a group G on a Hilbert space H is a mapping from G to unitary operators of
H such that

1. ρ(ab) = ρ(a)ρ(b);
2. ρ(e) = 1.

If U is a unitary transformation on H , and we define the representation ρ′(a) = Uρ(a)U†, then ρ′(a) is also
a representation due the the fact that

ρ′(ab) = Uρ(ab)U† = Uρ(a)ρ(b)U† = Uρ(a)U†Uρ(b)U† = ρ′(a)ρ′(b);

ρ′(e) = Uρ(e)U† = UU† = 1.
(1.11)

Therefore, ρ′(a) satisfies both properties of a representation, implying that it is a representation. Moreover, ρ(a)
and ρ′(a) are called the equivalent representations. Equivalent representations are related to the change of the
basis in the Hilbert space H .

1.3 The SO(3)and SU(2) groups

The SO(3) groups is a general rotation groups in 3D, whose group elements are represented by matrices that
perform rotations about the three spatial axes x1, x2, x3:

R̂x1(α) =

1 0 0

0 cosα sinα

0 − sinα cosα


R̂x2(β) =

cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


R̂x3(γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

.
(1.12)

The SO(3) group is non-Abelian because the group multiplication is not commutative, indeed, for instannce,

R̂x1(α)R̂x3(γ) 6= R̂x3(γ)R̂x1(α). (1.13)
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By inspecting the infinitesimal rotations, we can define the generators of the group which correspond to the
transformation parameters. The generators in the form of differential operators are defined through their actions
on a function of coordinates F (x1, x2, x3). For example,

J3F (x1, x2, x3) = i lim
γ→0

[
F (x′1, x′2, x′3)− F (x1, x2, x3)

γ

]
= i lim

γ→0

[
F (x1 + γx2, x2 − γx1)− F (x1, x2, x3)

γ

]
=: i

(
x2

∂

∂x1
− x1

∂

∂x2

)
F (x1, x2, x3).

(1.14)

Therefore,

J3 = −i
(
x1

∂

∂x2
− x2

∂

∂x1

)
. (1.15)

Similarly,

J1 = −i
(
x2

∂

∂x3
− x3

∂

∂x2

)
,

J2 = −i
(
x3

∂

∂x1
− x1

∂

∂x3

)
.

(1.16)

The generators of SO(3) satisfy the important commutation relation (which defines the Lie algebra)[
J i, Jj

]
= iεijkJk, (1.17)

where εijk is a totally antisymmetric tensor with ε123 = 1. The matrix expressions for the generators J i are:

J1 = −idR̂x
1(α)

dα

∣∣∣∣∣
α=0

=

0 0 0

0 0 −i
0 i 0


J2 = −idR̂x

2(β)

dβ

∣∣∣∣∣
β=0

=

 0 0 i

0 0 0

−i 0 0


J3 = −idR̂x

3(γ)

dγ

∣∣∣∣∣
γ=0

=

0 −i 0

i 0 0

0 0 0

.
(1.18)

We now can write the rotation matrix for a finite transformation by exponentiating the generators

R̂(θi) = eiJ
iθi , (1.19)

where θi are the group parameters, or in this case, the angles, and J iθi = J1θ1 + J2θ2 + J3θ3. For example,

eiJ
3γ = 1+ iJ3γ − 1

2!
(J3)2γ2 − i

3!
(J3)3γ3 + · · ·

=

1 0 0

0 1 0

0 0 1

+ γ

 0 1 0

−1 0 0

0 0 0

+
γ2

2!

−1 0 0

0 −1 0

0 0 0

+
γ3

3!

0 −1 0

1 0 0

0 0 0

+ · · ·

=

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 = R̂x3(γ).

(1.20)

Like the matrices of SO(3) are regarded as the transformations (rotations) in 3-dimensional real space, we can
view SU(2) matrices as the transformations in a 2-dimensional complex space of spinors (Weyl spinors) with the
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following transformation properties:

χ =

(
χ1

χ2

)
: χ′ = Uχ, χ′† = χ†U†, (1.21)

where U is a unitary matrix. Moreover, we can develop a correspondence between SU(2) and SO(3):

SU(2) transformations on
(
χ1

χ2

)
= SO(3) transformations on

x1x2
x3

. (1.22)

More precisely speaking, there is a 2-to-1 correspondence R : SU(2) → SO(3) between SU(2) and SO(3). The
map R is a group homomorphism (structure-preserving).
In analogy with rotations, the general SU(2) transformations can be written as

U = eiσ
iθi/2. (1.23)

Thus, we identify the generators of SU(2) to be 1/2 Pauli matrices, 1
2σ

i, which obey the commutation relations[
σi

2
,
σj

2

]
= iεijk

σk

2
. (1.24)

The Pauli matrices are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.25)

This is the 2D spinor representation of SU(2) (with a basis given by Pauli matrices), used for spin- 12 particles. We
can also define the 3D vector representation of SU(2), whose generators are given by

S1 =
1√
2

0 1 0

1 0 1

0 1 0

, S2 =
1√
2

0 −i 0

i 0 −i
0 i 0

, S3 =

1 0 0

0 0 0

0 0 −1

. (1.26)

The vector representation is used for spin-1 particles. In general, the dimension of the representation of SU(2) is
2s+ 1, where s is the spin number, i.e. the eigenvalue of the operator S3.
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2 Lorentz and Poincare Groups

2.1 The Lorentz group

Up to some possible discrete transformations, a general Lorentz transformation can be written as a product of
rotations around the x, y or z axes:

1

1

cos θx sin θx
− sin θx cos θx

,

1

cos θy − sin θy
1

sin θy cos θy

,

1

cos θz sin θz
− sin θz cos θz

1

 (2.1)

and boosts in the x, y or z direction:
coshβx sinhβx
sinhβx coshβx

1

1

,

coshβy sinhβy

1

sinhβy coshβy
1

,

coshβz sinhβz

1

1

sinhβz coshβz

. (2.2)

“Boosts” are just transformations which connect two inertial frames, moving with velocity v. In the above matrices
we can identify the two hyperbolic functions related to the rapidity βi (i = x, y, z) as

coshβi =
1√

1− v2i /c
2
= γi, sinhβi =

vi/c√
1− v2i /c

2
= γi

v1
c
, (2.3)

where γi are the Lorentz factors.
Matrix expressions for the generators of the boosts Ki can be computed similarly to those for the generators of
rotations J i, which are now given by 4× 4 matrices. With these generators we obtain the following commutation
relations: [

Ki,Kj
]
= −iεijkJk. (2.4)

We see that the boost transformations alone do not form a group since their generators Ki do not form a closed
algebra. We also have [

Ki, Jj
]
= iεijkJk. (2.5)

Thus, the set of transformations composed of rotations about three axes and boosts in three directions (the Lorentz
transformations) form a six-parametric group that is called the SO(1, 3) Lorentz group.
Now how do spinors transform under the Lorentz transformations? We can define the generators

N i
+ =

1

2

(
J i + iKi

)
, N i

− =
1

2

(
J i − iKi

)
. (2.6)

We can show that they satisfy the commutation relations[
N i

+, N
j
−

]
= 0,[

N i
+, N

j
+

]
= iεijkNk

+,[
N i

−, N
j
−

]
= iεijkNk

−.

(2.7)

The last two commutation relations tell us that N i
+ and N i

− can be viewed as generators of two SU(2) groups.
The first commutation relations says that the transformations under these two SU(2) groups are independent.
Therefore, the Lorentz group can be viewed as a direct product of two SU(2) groups, SU(2)+×SU(2)−. We can
label the states by two angular momenta (s+, s−) and define two types of spinor:

χ ∼
(
1

2
, 0

)
with J i =

1

2
σi, Ki = − i

2
σi (2.8)
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and

ξ ∼
(
0,

1

2

)
with J i =

1

2
σi, Ki =

i

2
σi. (2.9)

Problem: A general Lorentz transformation ei(K
iβi+Jiθi) with either Eq. (2.8) or (2.9) as generators is not unitary!

Solution: The fundamental group for relativistic quantum systems is not the Lorentz group but the Poincare group.

2.2 The Poincare group

Combining the Lorentz transformations with spacetime translations we get ten-parametric transformations

x′µ = Λµνx
ν + aµ, (2.10)

which form the Poincare group, ISO(1, 3). Notice that the spacetime translation does not commute with the
Lorentz transformation. Hence, the Poincare group is a semi-direct product of the translation group P4 and the
Lorentz group SO(1, 3): ISO(1, 3) = P4 ⊗ SO(1, 3).
The generators of translations are

Pµ = −i∂µ, (2.11)

and the generators of Lorentz transformations are

Lµν = i(xµ∂ν − xν∂µ). (2.12)

They satisfy the following commutation relations (Poincare algebra):

[Pµ, P ν ] = 0

[Lµν , Lρσ] = −i(ηµρLµσ − ηµσLνρ − ηνρLµσ + ηνσLµρ)

[Lµν , P ρ] = −i(ηµρP ν − ηνρPµ).

(2.13)

More generally, the full Lorentz spin-orbital angular momentum generators Mµν are

Mµν = Sµν + Lµν , (2.14)

where the spin generators Sµν satisfy the same commutation relations as Lµν and [Lµν , Sρσ] = 0. Therefore, the
generators Mµν satisfy the same Poincare algebra (2.13). Moreover, Mµν is an antisymmetric tensor: Mµν =

−Mνµ.

There are two Casimir operators of the Poincare group (because the Poincare group is a rank-2 group). The
first one leaves pµpµ unchanged, which is given by

P 2 = PµPµ, (2.15)

where
Pµ |p〉 = pµ |p〉 . (2.16)

Consider a Lorentz transformation
U(Λ̂, a) |p〉 =

∣∣∣Λ̂p〉 , (2.17)

with
Pµ
∣∣∣Λ̂p〉 =

(
Λ̂p
)µ ∣∣∣Λ̂p〉 . (2.18)

Then we see that (
Λ̂p
)µ(

Λ̂p
)
µ
= Λµνp

νΛρµpρ = δρνp
νpρ = pνpν = p2. (2.19)

The second Casimir operator is
W 2 =WµWµ, (2.20)
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where Wµ is the Pauli-Lubanski pseudovector,

Wµ = −1

2
εµνρσSνρPσ. (2.21)

Therefore, the Casimir invariant of the operator P 2 refers to mass invariance,

C1 = p2 = E2 − |p|2 = m2, (2.22)

whereas the Casimir invariant of the operator W 2 refers to spin invariance,

C2 = −m2s(s+ 1). (2.23)

2.3 Behavior of fields under the Poincare group

A classical local field is an arbitrary function of space-time point (xµ), which we denote by F (xµ) in a certain
reference frame. In general the functional dependence is frame-dependent, and therefore in some other reference
frame the same field will be denoted by F ′(x′µ).
Consider an infinitesimal transformation which takes the initial reference frame to a primed one. The variation of
the field under this transformation is

δF = F ′(x′µ)− F (xµ)

= F ′(xµ + δxµ)− F (xµ)

= F ′(xµ) + ∂µF
′δxµ +O(δx2)− F (xµ)

= F ′(xµ)− F (xµ)︸ ︷︷ ︸
δF : form variation

+∂µF
′δxµ +O(δx2)

(2.24)

Therefore, the variation caused by the coordinate transformation can be written as

δF = δF + ∂µF
′δxµ. (2.25)

Scalar fields

A scalar field is the same in different inertial frames related by Lorentz transformations (LTs), i.e.

φ′(x′µ) = φ(xµ). (2.26)

Therefore, we have the total variation of the scalar field:

δφ = 0 = δφ+ ∂µφ δx
µ. (2.27)

An infinitesimal LT on the spacetime coordinates can be represented by

Λµν = δµν + ωµν , (2.28)

where ωµν is a rank-2 antisymmetric tensor which has 6 independent components with zeros on the diagonal.
Hence, we can write

δxµ = Λµνxν − xµ = ωµνxν . (2.29)

Setting a general Lorentz transformation on the scalar field as

φ′(xµ) = e−
i
2ω

µνMµνφ(xµ) ' φ(xµ)− i

2
ωµνMµνφ(x

µ), (2.30)

we can write the form variation as

δφ = φ′(xµ)− φ(xµ) = − i

2
ωµνMµνφ. (2.31)
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Plugging this back into Eq. (2.27), we get

− i

2
ωµνMµνφ+ ∂µφ ω

µνxν = 0

=⇒ i

2
Mµν = xν∂µ

µ↔ν
===⇒ i

2
Mνµ = − i

2
Mµν = xµ∂ν

subtraction
=====⇒ Mµν = i(xµ∂ν − xν∂µ) =: Lµν

=⇒ Sµν = 0.

(2.32)

Therefore, the scalar field describes a particle with zero spin.
Note: Space inversion transformations form a discrete Z2 group with two irreducible representations, parity even
(+1) and parity odd (−1):

φ′(x′0, x′i) = ±φ(x0,−xi). (2.33)

The parity-odd scalar field is called a pseudoscalar.

Spinor fields

We already know that there exists two irreducible spinor representations of the Lorentz group. Hence, there are
two two-component spinor fields (Weyl spinors), which transform as

ψ′
R(x

′µ) = Λ̂RψR(x
µ) := exp

[
i

2
σi(θi − iφi)

]
ψR(x

µ);

ψ′
L(x

′µ) = Λ̂LψL(x
µ) := exp

[
i

2
σi(θi + iφi)

]
ψL(x

µ).

(2.34)

Notice that under space inversion, Λ̂L ↔ Λ̂R and hence ψL(xµ) ↔ ψR(x
µ). Furthermore, we can define the Dirac

spinor by combining ψL and ψR into a four-component spinor:

ψ(xµ) =

(
ψR(x

µ)

ψL(x
µ)

)
, (2.35)

which transforms under LTs as

ψ′(x′µ) =

(
Λ̂R 0

0 Λ̂L

)
ψ(xµ), (2.36)

and under space inversion as

ψ′(x′0,−xi) =
(
0 1

1 0

)
ψ(x0, xi) =: γ0ψ(x0, xi). (2.37)

The LT can also be written in a more compact form by introducing the other three γ-matrices (in the chiral or
Weyl representation):

γi =

(
0 −σi
σi 0

)
. (2.38)

Eq. (2.36) then reads

ψ′(x′µ) = exp

(
− i

2
ωµνS

µν

)
ψ(xµ), (2.39)

where we have introduced
Sµν =

1

4i
[γµ, γν ] (2.40)

and
ω0i = φi, ωij = εijkθk. (2.41)
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This is exactly the spinor representation of the Lorentz group. The defining algebra is the Clifford algebra, or Dirac
algebra

{γµ, γν} = γµγν + γνγν = 2ηµν14×4. (2.42)

We can also define the chirality operator as

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
. (2.43)

It forms the two projection operators,

PL =
1− γ5

2
=

(
0 0

0 1

)

PR =
1+ γ5

2
=

(
1 0

0 0

)
.

(2.44)

Apart from the Weyl representation, we can also work with other equivalent representations, which are related to
each other by unitary transformations. Consider, for example, a new basis for the Dirac spinor

ψ(xµ) =

(
ψ1(x

µ)

ψ2(x
µ)

)
, (2.45)

where (
ψ1(x

µ)

ψ2(x
µ)

)
= U

(
ψR(x

µ)

ψL(x
µ)

)
=

1√
2

(
1 1

1 −1

)(
ψR(x

µ)

ψL(x
µ)

)
=

1√
2

(
ψR(x

µ) + ψL(x
µ)

ψR(x
µ)− ψL(x

µ)

)
.

(2.46)

The γ-matrices in this representation can be obtained from those in the Weyl representation by a transformation,
UγU†. Explicitly, we have

γ0 =

(
σ0 0

0 −σ0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 σ0

σ0 0

)
. (2.47)

This is the standard or Dirac representation.

Vector fields

Consider a vector field, Aµ(xν), which under LT is written as

Aµ(x) → ΛνµAν(Λ
−1x), (2.48)

where xν → x′ν = Λνµx
µ.

Now we look at the full variation caused by the coordinate transformation,

δ(Aµ(x
ν)) = δ(Aµ(x

ν)) + ∂ρ(Aµ(x
ν))δxρ. (2.49)

Since the components of the vector field form a Lorentz four-vector in the same way as the spacetime coordinates
do, the total variation of the vector field should be of the same form as a variation of the spacetime coordinates
(refer to Eq. (2.29)), i.e.

δAµ = ωνµAν =
1

2
ωρσ
(
ηρµη

σν − ησµη
ρν
)
Aν . (2.50)
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The form variation in this case is written as (compare with the case of a scalar field)

δAµ = − i

2
ωρσ(M

ρσ)νµAν

= − i

2
ωρσ(L

ρσ)νµAν −
i

2
ωρσ(S

ρσ)νµAν .

(2.51)

Putting them back into Eq. (2.49) and canceling ωρσ (note that δxρ = ωρσxσ):

1

2

(
ηρµη

σν − ησµη
ρν
)
Aν = − i

2
(Lρσ)νµAν︸ ︷︷ ︸

1

− i

2
(Sρσ)νµAν︸ ︷︷ ︸

2

+ ∂ρAµxσ︸ ︷︷ ︸
3

1 =
1

2
(xρ∂σ − xσ∂ρ)

ν
µAν =

1

2

[
ηαρηβσ(xα∂β − xβ∂α)

]ν
µ
Aν =

(
−ηαρηβσxβ∂α

)ν
µ
Aν

3 = (xσ∂ρ)
ν
µAν = (ηαρηβσxβ∂α)

ν
µAν

=⇒ 1 + 3 = 0

=⇒ (Sρσ)νµ = −i
(
ηρµη

σν − ησµη
ρν
)
.

(2.52)

This describes the spin-1 state, so the vector field has s = 1.

The connection between the spinor representation and the vector representation of the Lorentz group...
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3 Lagrangian and Hamiltonian Formalism

3.1 Relativistic fields: general properties

Consider a set of generic local relativistic fields Fa(xµ). They can be Lorentz scalars, spinors, vectors, etc. We
define the Lagrangian density L as a real functional of the fields Fa(xµ) and their four derivatives ∂νFa(xµ),
which therefore has the form

L = L(Fa(x), ∂µFa(x)). (3.1)

The action is defined as

S =

∫ t2

t1

dt

∫
d3x L =

∫
d4x L(Fa, ∂µFa). (3.2)

We determine the equations of motion by the principle of least action. We vary the path, keeping the end points
fixed and require δS = 0:

δS =

∫
d4x

[
∂L
∂Fa

δFa +
∂L

∂(∂µFa)
δ(∂µFa)

]
=

∫
d4x

[
∂L
∂Fa

− ∂µ

(
∂L

∂(∂µFa)

)]
δFa +

∂L
∂(∂µFa)

δFa

∣∣∣∣
∂Ω

= 0.

(3.3)

The last term vanishes because because the field vanishes at infinity and thus, δFa
∣∣
∂Ω

= 0. Then this yields the
famous Euler-Lagrange equations of motion for the field Fa,

∂L
∂Fa

− ∂µ

(
∂L

∂(∂µFa)

)
= 0. (3.4)

In the Hamiltonian formalism, we define a canonical (conjugate) momentum corresponding to the field Fa(x):

Πa(x) :=
∂L

∂(∂0Fa)
. (3.5)

The Hamiltonian density of the system is then

H =
∑
a

Πa∂0Fa − L. (3.6)

From here, we can derive two Hamilton’s equations analogous to the Euler-Lagrange equation in the Lagrangian
formalism. The first one follows from the Euler-Lagrange equation (3.4), noting that ∂L/∂Fa = − ∂H/∂Fa :

∂0Πa = − ∂H
∂Fa

. (3.7)

The second one follows from the definition of the Hamiltonian upon differentiation w.r.t. Πa:

∂0Fa =
∂H
∂Πa

. (3.8)

The Hamiltonian density H corresponds to the energy density of the system.

3.2 Noether’s theorem

There is a connection between the conservation laws of the isolated system and its symmetries, which is given by
the Noether’s theorem. Noethers theorem states that to every differentiable (continuous) symmetry generated by
local actions, there corresponds to a conserved current.

Consider a system of local fields Fa(x) which is described by the Lagrangian (3.1). Suppose we have N -
parametric continuous transformations of the spacetime coordinates and fields, whose infinitesimal forms are writ-
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ten as

δxµ = Xµ
k (x)ω

k,

δFa(x) = Φak(x)ω
k,

(3.9)

where ωk (k = 1, 2, . . . , N) are parameters of the the infinitesimal transformations and Xµ
k (x) and Φak(x) pa-

rameterize the variation of the coordinates and fields, respectively. We say a theory is invariant under the transfor-
mations if the action is invariant, and thus,

L′(x′) d4x′ = L(x) d4x. (3.10)

This means that the variation is zero,

0 = δ(L(x)d4x) = δ(L(x))d4x︸ ︷︷ ︸
1

+L(x)δ(d4x)︸ ︷︷ ︸
2

. (3.11)

We first inspect 1 , whose variation can be written as

δ(L(x)) = δ(L(x)) + (∂µL(x))δxµ. (3.12)

The form variation of the Lagrangian (the 1st term) is due to the form variation of the fields,

δFa(x) = δFa(x)− (∂µFa(x))δx
µ = [Φak(x)− (∂µFa(x))X

µ
k ]ω

k, (3.13)

and their derivatives, which we can write
δ(∂µFa) = ∂µ(δFa) (3.14)

because the form variations always commute with the spacetime derivatives.
Therefore, the 1st term in Eq. (3.12) is

δ(L(x)) = ∂L
∂Fa

δFa +
∂L

∂(∂µFa)
δ(∂µFa)

=


�����������:0
∂L
∂Fa

− ∂µ

(
∂L

∂(∂µFa)

) δFa + ∂µ

(
∂L

∂(∂µFa)
δFa

)

= ∂µ

(
∂L

∂(∂µFa)
[Φak(x)− (∂µFa(x))X

µ
k ]

)
ωk.

(3.15)

The first term vanishes if we apply the Euler-Lagrange equation (‘vanishes on-shell’). The 2nd term in Eq. (3.12)
is just

(∂µL(x))δxµ = (∂µL(x))Xµ
k ω

k. (3.16)

So we have

1 3 δ(L(x)) = ∂µ

(
∂L

∂(∂µFa)
[Φak(x)− (∂µFa(x))X

µ
k ]

)
ωk + (∂µL(x))Xµ

k ω
k. (3.17)

Now we consider 2 in Eq. (3.11), where we need to evaluate the variation of the volume element (integration
measure in the action), δ(d4x) under the transformations. We have

d4x′ = |det J |d4x, (3.18)

where J is the Jacobian of the transformations:

det J := det

[
∂x′µ

∂xν

]
=det

[
δµν + ∂ν(X

µ
ν )ω

k
]

=1 + ∂µ
(
Xµ
ν (x)ω

k
)
.

(3.19)
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Thus,
2 3 δ(d4x) = ∂µ

(
Xµ
ν (x)ω

k
)
d4x. (3.20)

Finally, if we plug our 1 and 2 back into Eq. (3.11), we obtain the continuity equation:

∂µJ
µ
k = 0 (3.21)

for N Noether currents Jµk :

Jµk =

[
∂L

∂(∂µFa)
− Lδµν

]
Xν
k − ∂L

∂(∂µFa)
Φak. (3.22)

Knowing the currents, we can define the corresponding N Noether charges as

Qk =

∫
V

d3x J0
k . (3.23)

Take the time derivative of the charges:

d

dt
Qk(t) =

∫
V

d3x ∂0J
0
k

=

∫
V

d3x
[
∂µJ

µ
k − ∂iJ

i
k

]
= −

∫
V

d3x ∂iJ
i
k

= −
∫
∂V

dSi J
i
k = 0,

(3.24)

where we have assumed that J ik = 0 at the boundary of the surface (i.e. no current flows out of the system and
thus the system is closed).
Therefore, we indeed have N conserved quantities corresponding to N parametric symmetry transformations.
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4 Classical Fields / One-Particle Wave Equations

4.1 Scalar field: The Klein-Gordon equation

Real scalar field

The relativistically invariant Lagrangian for a real scalar field is:

L =
1

2
∂µφ∂

µφ︸ ︷︷ ︸
kinetic term

−1

2
m2φ2︸ ︷︷ ︸

mass term

. (4.1)

(Upon quantization in later chapters, we will indeed arrive at a particle interpretation, which describes particles
with mass m).

The equation of motion for the scalar field φ is given by the Euler-Lagrange equation. We have

∂µ

(
∂L

∂(∂µφ)

)
= ∂µ∂

µφ,
∂L
∂φ

= −m2φ. (4.2)

Therefore, the equation of motion becomes

(�+m2)φ = 0, (4.3)

where � ≡ ∂µ∂
µ = 1

c2
∂2

∂t2 − ∇2 is the Lorentz invariant operator called the d’Alambertian operator. This is
known as the Klein-Gordon equation for scalar fields.
To solve the KG equation, we take the Fourier transform of the field:

φ(x) =

∫
d4k

(2π)4
φ(k)e−ikµx

µ

. (4.4)

Plugging it into the KG equation (4.3), we obtain the relativistic relation

(k0)
2 = (ki)

2 +m2

=⇒ k0 = ±
√

(ki)2 +m2.
(4.5)

Defining ωk = +
√
(ki)2 +m2, we can write the general solution as

φ(x) =

∫
d4k

(2π)4
δ(k2 −m2)φ(k)e−ikµx

µ

=

∫
d4k

(2π)4
1

ωk
[δ(k0 − ωk) + δ(k0 + ωk)]φ(k)e

−ikµxµ

= φ+(x) + φ−(x),

(4.6)

where

φ+(x) =

∫
d3k

(2π)42ωk
N+φ̃+(k)e

−i(ωkx
0−k·x) (4.7)

and

φ−(x) =

∫
d3k

(2π)42ωk
N−φ̃−(−k)ei(ωkx

0−k·x) (4.8)

are called the positive and negative frequency modes of the field, respectively.
The reality condition φ(x) = φ∗(x) implies

N∗
+φ̃

∗
+(k) = N−φ̃−(−k) ≡ N∗φ̃∗(k). (4.9)
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Moreover, imposing the normalization condition N = (2π5/2), the general solution can be written as

φ(x) =

∫
d3k

(2π)3/2 2ωk

[
φ̃(k)e−i(ωkx

0−k·x) + φ̃∗(k)ei(ωkx
0−k·x)

]
. (4.10)

Now we define the energy-momentum tensor for the scalar field as

Tµν =
∂L

∂(∂µφ)
(∂νφ)− δµνL, (4.11)

so we can calculate the Hamiltonian density and the 3-momentum density:

H = T 0
0 =

1

2

[
(∂0φ)

2 + (∂iφ)
2 +m2φ2

]
Pi = T 0

i = ∂0φ∂iφ.
(4.12)

Putting Eq. (4.10) into them and integrating, we get the Hamiltonian

H =

∫
d3xH =

∫
d3k

1

4

[
φ̃(k)φ̃∗(k) + φ̃∗(k)φ̃(k)

]
, (4.13)

and similarly, the 3-momentum

Pi =

∫
d3x Pi =

∫
d3k

ki
4ωk

[
φ̃(k)φ̃∗(k) + φ̃∗(k)φ̃(k)

]
. (4.14)

Complex scalar field

A complex scalar field can be written as linear combination of two real scalar fields:

φ(x) =
1√
2
(φ1 + iφ2)

φ∗(x) =
1√
2
(φ1 − iφ2).

(4.15)

Since the Lagrangian is real, it is
L = (∂µφ)(∂

µφ∗)−m2φφ∗. (4.16)

The Euler-Lagrange equation will give two KG equations

(�+m2)φ = 0

(�+m2)φ∗ = 0.
(4.17)

We can solve these two KG equations in exactly the same way as in the real scalar field case. The essential
difference is that in the case of a complex scalar field, the reality condition no longer holds, and hence φ̃(k) and
φ̃(−k) are completely independent. So we write the solutions as

φ(x) =

∫
d3k

(2π)3/2 2ωk

[
φ̃(k)e−i(ωkx

0−k·x) + φ̃(−k)ei(ωkx
0−k·x)

]
φ∗(x) =

∫
d3k

(2π)3/2 2ωk

[
φ̃∗(−k)e−i(ωkx

0−k·x) + φ̃∗(k)ei(ωkx
0−k·x)

]
.

(4.18)

Similarly, we obtain the Hamiltonian

H =

∫
d3k

1

2

[
φ̃(k)φ̃∗(k) + φ̃∗(−k)φ̃(−k)

]
, (4.19)

and the 3-momentum
Pi =

∫
d3k

ki
2ωk

[
φ̃(k)φ̃∗(k) + φ̃∗(−k)φ̃(−k)

]
. (4.20)
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An extra global U(1) symmetry compared to the case of a real scalar field, i.e. the Lagrangian for the complex
scalar field is invariant under the transformations:

φ(x) → e−ieαφ(x), φ∗ → φ∗(x)eieα. (4.21)

Viewing α as an infinitesimal parameter, we write

δφ = −ieαφ, δφ∗ = ieαφ∗ (4.22)

We can calculate the Noether current from Eq. (3.22), where δxµ = Xµ
k ω

k = 0 because there is no change in the
coordinates, and ωk = α:

δφ = Φkω
k = Φα = −ieαφ =⇒ Φ = −ieφ

δφ∗ = Φkω
k = Φ∗α = ieαφ∗ =⇒ Φ∗ = ieφ∗.

(4.23)

Thus, the Noether current is

Jµ = − ∂L
∂(∂µφ)

Φ− ∂L
∂(∂µφ∗)

Φ∗

= −∂µφ∗(−ieφ)− ∂µφ(ieφ∗)

= ie(φ∂µφ∗ − φ∗∂µφ).

(4.24)

We see that this current is covariantly conserved, i.e. it satisfies the continuity equation

∂µJ
µ = 0 =⇒ ∂0ρ− ∂iJ

i = 0, (4.25)

where
ρ = ie(φ∂0φ∗ − φ∗∂0φ) (4.26)

and
J i = ie(φ∂iφ∗ − φ∗∂iφ) (4.27)

are called the charge density and the current density, respectively.
Thus the conserved charge curresponding to the global U(1) symmetry is

Q = ie

∫
d3x (φ∂0φ∗ − φ∗∂0φ)

= e

∫
d3k

1

2ωk

[
φ̃(k)φ̃∗(k)− φ̃∗(−k)φ̃(−k)

]
.

(4.28)

4.2 Spinor field: The Dirac equation

The relativistically invariant Lagrangian for the Dirac spinor field can be written as

L = iψγµ∂µψ −mψψ. (4.29)

The equation of motion for the field ψ = ψ†γ0 yields the well-known Dirac equation:

(iγµ∂µ −m)ψ = 0. (4.30)

Similarly, the equation of motion for the field ψ yields:

i∂µψγ
µ +mψ = 0. (4.31)
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To find the solutions to the Dirac equation, let us work with the Dirac (standard) representation. Again, we take
the Fourier transform of the spinor field:

ψα(x) =

∫
d4k

(2π)4
ψα(k)e−ikµx

µ

. (4.32)

We know that the Dirac spinor is a four-component bispinor in the ‘spinor space’, and in the standard representa-
tion, ψα(k) reads

ψα(k) =

(
uA(k)

uB(k)

)
=


u1A
u2A
u1B
u2B

. (4.33)

Then the Dirac equation (4.30) yields a system of homogeneous algebraic equations(
(k0 −m)1 −k · σ

k · σ −(k0 +m)1

)(
uA(k)

uB(k)

)
= 0. (4.34)

The necessary and sufficient condition for the existence of non-trivial solutions of the system of equations is

det

(
(k0 −m) −k · σ
k · σ −(k0 +m)

)
= 0, (4.35)

which implies
k20 − k2i = m2. (4.36)

Again, let us first consider the positive frequency modes, k0 = ωk :=
√
k2i +m2. We immediately have

uB(k) =
k · σ
ωk +m

uA(k). (4.37)

There are two options for uA:

uA(k) =

(
1

0

)
= χ+, (‘spin up’) (4.38)

or

uA(k) =

(
0

1

)
= χ−. (‘spin down’) (4.39)

Thus, we have two degenerate solutions

us(k) = C

(
χs

k·σ
ωk+m

χs

)
, (4.40)

where s denotes the spin orientation (+ or −), and C is a normalization constant. We adopt the following normal-
ization

us′(k)us(k) = 2mδs′s, (4.41)

which gives
C =

√
ωk +m. (4.42)

Hence,

us(k) =
√
ωk +m

(
χs

k·σ
ωk+m

χs

)
. (4.43)

Similarly, for the negative frequency modes, vs(k), where k0 = −ωk, if we adopt a slightly different normalization,

vs′(k)vs(k) = −2mδs′s, (4.44)
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we will get another two degenerate solutions

vs =
√
ωk +m

(
−k·σ
ωk+m

χs
χs

)
. (4.45)

Then we can write down the general solution to the Dirac equation,

ψ(x) = ψ+(x) + ψ−(x), (4.46)

where

ψ+(x) =

∫
d3k

(2π)3/2 2ωk

∑
s

cs(k)us(k)e
−i(ωkx

0−k·x), (4.47)

and

ψ−(x) =

∫
d3k

(2π)3/2 2ωk

∑
s

ds(−k)vs(−k)ei(ωkx
0−k·x). (4.48)

Note that cs(k) and ds(−k) are complex functions, while us(k) and vs(−k) are spinors.
Similarly we have

ψ(x) = ψ+(x) + ψ−(x) (4.49)

for Dirac conjugated spinors.

Next, let us define the Hamiltonian and the 3-momentum for the Dirac field. The energy-momentum tensor
(4.11) for the Dirac field is

Tµν =
∂L

∂(∂µψ)
(∂νψ) +

�
�
�
�>

0
∂L

∂(∂µψ)

(
∂νψ

)
− Lδµν

= iψγµ∂νψ − ψ(iγρ∂ρψ −mψ)δµν

= iψγµ∂νψ,

(4.50)

where in the second line we have used the equation of motion (the Dirac equation) so that the 2nd term vanishes.
Then we have:

H = T 0
0 = iψ†∂0ψ

Pi = T 0
i = iψ†∂iψ.

(4.51)
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Let us calculate the Hamiltonian as follows:

H =

∫
d3xH

= i

∫
d3x ψ†∂0ψ

=
i

4(2π)3

∫
d3x

∑
s

∑
s′

∫ ∫
d3k d3k′

1

ωk′ωk

·
[
c†s(k)u

†
s(k)e

i(ωkx
0−k·x) + d†s(−k)v†s(−k)e−i(ωkx

0−k·x)
]

·
[
cs′(k

′)us′(k
′)(−iωk′)e−i(ωk′x0−k′·x) + ds′(−k′)vs′(−k′)(iωk′)ei(ωk′x0−k′·x)

]
=
i

4

∑
s

∑
s′

∫ ∫
d3k d3k′

1

ωk′ωk

·
[
(−iωk′)c†s(k)cs′(k

′)u†s(k)us′(k
′)ei(ωk−ωk′ )x0

∫
d3x

(2π)3
ei(k

′−k)·x

+ (iωk′)d†s(−k)ds′(−k′)v†s(−k)vs′(−k′)e−i(ωk−ωk′ )x0

∫
d3x

(2π)3
ei(k−k′)·x

+ (iωk′)c†s(k)ds′(−k′)u†s(k)vs′(−k′)ei(ωk+ωk′ )x0

e−2ik′·x
∫

d3x

(2π)3
ei(k

′−k)·x

+ (−iωk′)d†s(−k)cs′(k
′)v†s(−k)us′(k

′)e−i(ωk+ωk′ )x0

e2ik
′·x
∫

d3x

(2π)3
ei(k−k′)·x

]
(

Note:
∫

d3x

(2π)3
ei(k−k′)·x = δ3(k− k′) = δ3(k′ − k) =

∫
d3x

(2π)3
ei(k

′−k)·x
)

=
1

2ωk

∫
d3k

∑
s

[
c†s(k)cs(k)− d†s(−k)ds(−k)

]
,

(4.52)

where in the last line we first integrate over d3k′ (so that the delta function forces k′ = k), and then use the
following relations which can be obtained from Eqs. (4.43) and (4.45):

u†s(k)us′(k) = 2ωkδss′

v†s(−k)vs′(−k) = 2ωkδss′

u†s(k)vs′(−k) = v†s(−k)us′(k) = 2ωkδss′ .

(4.53)

Similarly, the 3-momentum is found to be

Pi =

∫
d3x Pi

= i

∫
d3x ψ†∂iψ

=
1

2ωk

∫
d3k ki

∑
s

[
c†s(k)cs(k)− d†s(−k)ds(−k)

]
.

(4.54)

Like in the case of the complex scalar field, the Dirac Lagrangian also possesses a global U(1) symmetry under
the transformations:

ψ(x) → e−ieαψ(x), ψ(x) → eieαψ(x). (4.55)

Using Noether’s theorem, we can derive the covariantly conserved current density

Jµ = eψγµψ, with ∂µJ
µ = 0. (4.56)
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Then the corresponding conserved charge is

Q =

∫
d3x J0

=
e

2

∫
d3k

∑
s

[
c†s(k)cs(k) + d†s(−k)ds(−k)

]
.

(4.57)

Upon field quantization we will see that this quantity indeed corresponds to the electric charge of a particle (e).

4.3 Massless vector field: The Maxwell’s equations

The Lagrangian for a massless vector field, which describes a particle with spin-1 (photon) is

L = −1

4
FµνF

µν , (4.58)

where Fµν is an antisymmetric tensor known as the field strength:

Fµν = ∂µAν − ∂νAµ. (4.59)

Again, using the Euler-Lagrange equation, we have

∂L
∂(∂ρAσ)

=
∂

∂(∂ρAσ)

[
−1

4
ηµαηνβ(∂αAβ − ∂βAα)(∂µAν − ∂νAµ)

]
= −1

4
ηµαηνβ(δρα δ

σ
β − δρβ δ

σ
α)Fµν −

1

4
ηµαηνβFαβ(δ

ρ
µ δ

σ
ν − δρν δ

σ
µ)

= −1

4
ηµρηνσFµν +

1

4
ηµσηνρFµν −

1

4
ηραησβFαβ +

1

4
ηρβησαFαβ

= −1

2
(F ρσ − Fσρ)

= −F ρσ

(4.60)

and
∂L
∂Aσ

= 0. (4.61)

Therefore, the equation of motion is
∂ρF

ρσ = 0. (4.62)

We can demonstrate that the massless vector field Aµ =
(
A0, Ai

)
actually describes the electromagnetic field, i.e.

it gives the Maxwell’s equations. We define the electromagnetic field strength tensor

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bz 0

, Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bz 0

. (4.63)

So we can pick up the E and B components:

Ek =

(
−∂A
∂t

−∇Φ

)k
= −

(
∂0Ak − ∂kA0

)
= −F 0k (4.64)

and
Bk = (∇×A)

k
= εijk∂iAj =

1

2
εijkF ij . (4.65)

Note that ∂i = ∂
/
∂xi =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
, while ∂i = − ∂

/
∂xi =

(
− ∂
∂x ,−

∂
∂y ,−

∂
∂z

)
(refer to Eq. (1.1)). This is

what we used in the second equal sign in Eq. (4.64). Also notice that while Aµ =
(
A0, Ai

)
= (Φ, Ax, Ay, Az),
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Aµ = (A0, Ai) = (Φ,−Ax,−Ay,−Az) so that

∂µA
µ = ∂µAµ =

∂Φ

∂t
+∇ ·A. (4.66)

Hence, for example

Ek =

(
−∂A
∂t

−∇Φ

)
k

= ∂0Ak − ∂kA0 = F0k, (4.67)

which is consistent with the EM field strength tensor Fµν in Eq. (4.63).
Then we have

•
∇ ·B = ∂kBk = εijk∂k∂iAj = 0, (4.68)

because εijk is an antisymmetric tensor, while ∂k∂i is symmetric.

•

(∇×E)
k
= εijk∂iEj

= −εijk∂i∂0Aj +������:0
εijk∂i∂jA0

= ∂0
(
−εijk∂iAj︸ ︷︷ ︸
= −Bk

)
= −∂(B)k

∂t
,

(4.69)

where we have used (∇×A)i ≡ εijk∂jAk and εkij = εijk (an even permutation).

•
∇ ·E = ∂kEk = −∂kF 0k = −∂kF k0 = 0 (4.70)

because Fµν is antisymmetric and ∂k = −∂k. The last part is exactly Eq. (4.62).

•

(∇×B)
k − ∂(E)

k

∂t
= εijk∂iBj − ∂0Ek

=
1

2
εijk∂i

(
εlmkF lm

)
+ ∂0F 0k

=
1

2

(
δilδjm − δimδjl

)
∂iF lm + ∂0F 0k

=
1

2

(
∂lF lj − ∂mF jm

)
+ ∂0F 0k

=
1

2

(
∂lF lj − ∂lF jl

)
+ ∂0F 0k (m↔ l)

= ∂0F
0k − ∂iF

ik (F jl = −F lj , ∂iF ik = −∂iF ik)
= ∂µF

µk = 0.

(4.71)

We see that the massless vector field Aµ(x) with the Lagrangian (4.58) indeed describes the EM field in ‘empty
space’.

As we know, the massless vector field Aµ (photon field) should contain only two physical degrees of freedom,
corresponding to two possible helicity states in the Hilbert space. However, Aµ itself contains four real degrees of
freedom, implying that not all the degrees of freedom are physical. This is related to the fact that the Lagrangian
for the EM field possesses a U(1) gauge symmetry (local symmetry). Consider a shift of a given vector field Aµ
by a full 4-derivative of an arbitrary function α(x),

Aµ → Aµ + ∂µα. (4.72)

23



We can check that the Lagrangian (4.58) remains invariant, for example

∂µAν − ∂νAµ → ∂µ(Aν + ∂να)− ∂ν(Aµ + ∂µα)

= ∂µAν +����∂µ∂να − ∂νAµ −����∂ν∂µα

= ∂µAν − ∂νAµ.

(4.73)

As we mentioned before, this is another type of internal symmetry where the parameter of the transformation α(x)
depends on the spacetime coordinates. This is why it is called the gauge symmetry. Now we can use the gauge
freedom (arbitrariness of α(x)) to remove the unphysical degrees of freedom in our vector field. This procedure is
called the gauge fixing.

Coulomb (radiation) gauge

Conditions:
A0 = 0, ∂iA

i = 0 (∇ ·A = 0). (4.74)

The Coulomb gauge completely removes the arbitrariness of α(x) and hence, Aµ is uniquely defined with only
two independent degrees of freedom left. However, the Coulomb gauge is not Lorentz covariant. If a Lorentz
transformation to a new inertial frame is carried out, a further gauge transformation has to be made to retain the
Coulomb gauge condition. Because of this, the Coulomb gauge is not used in covariant perturbation theory, which
has become standard for the treatment of relativistic quantum field theories such as quantum electrodynamics
(QED). Lorentz covariant gauges such as the Lorenz gauge are usually used in these theories.
The equation of motion becomes

0 = ∂µF
µν =∂µ∂

µAν − ∂ν∂µA
µ

=∂µ∂
µAi − ∂ν���*

0
∂iA

i

=�Ai,

(4.75)

i.e. �Ai = 0. This is just the KG equation for the massless vector fields Ai(x)! Thus, we can immediately write
down the general solution in analogy to Eq. (4.10):

Ai(x) =

∫
d3k

(2π)3/2 2ωk

2∑
λ=1

εiλ(k)
[
Ãλ(k)e

−i(ωkx
0−k·x) + Ã∗

λ(k)e
i(ωkx

0−k·x)
]
, (4.76)

where we have introduced two polarization vectors ελ(k) with λ = 1, 2 and ωk = |k| since the field is massless.
The gauge condition ∂iAi = 0 gives

kiε
i
λ(k) = 0, (4.77)

which means that for a given direction of propagation k̂, ελ(k) are in the transverse direction. This is a well-known
result: the EM waves are transversely polarized.
Finally, the normalization condition for the polarization vectors is

εiλ′(k)εiλ(k) = δλ′λ. (4.78)

Lorenz gauge

Condition:
∂µA

µ = 0 (
∂Φ

∂t
+∇ ·A = 0). (4.79)

It only removes one out of four degrees of freedom, i.e. this gauge fixing is partial.
The equation of motion under the Lorenz gauge condition is

�Aµ = 0. (4.80)
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The general solution is

Aµ(x) =

∫
d3k

(2π)3/2 2ωk

3∑
λ=0

εµλ(k)
[
Ãλ(k)e

−i(ωkx
0−k·x) + Ã∗

λ(k)e
i(ωkx

0−k·x)
]
. (4.81)

The following normalization condition (orthonormality) is adopted:

εµλ(k)εµλ′(k) = ηλλ′ . (4.82)

We see that εµ0 (k) is a time-like 4-vector since εµ0 (k)εµ0(k) = +1, while εµ1,2,3(k) are space-like 4-vector since
εµ1,2,3(k)εµ1,2,3(k) = −1. Note that the Lorenz gauge condition gives

3∑
λ=0

kµε
µ
λ(k) = 0. (4.83)

Consider a reference frame where photon is moving along the third axis so that its 4-momentum is kµ = (ωk, 0, 0, ωk),
and the polarization vectors can be written as

εµ0 =


1

0

0

0


︸ ︷︷ ︸

scalar photons (unphysical)

, εµ1 =


0

1

0

0

, εµ2 =


0

0

1

0


︸ ︷︷ ︸

transverse photons (physical)

, εµ3 =


0

0

0

1


︸ ︷︷ ︸

longitudinal photons (unphysical)

. (4.84)

Only εµ1,2 are physical because they satisfy Eq. (4.83)

kµεµ1,2 = 0. (4.85)

Now let us calculate the Hamiltonian and the 3-momentum in the Lorenz gauge. The Lagrangian under the
Lorenz gauge condition can be written as

L = −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)

= −1

4
(∂µAν∂

µAν − ∂µAν∂
νAµ − ∂νAµ∂

µAν + ∂νAµ∂
νAµ)

= −1

2
(∂µAν∂

µAν −�����
∂µA

µ∂νAν ) (use Lorenz condition)

= −1

2
∂µAν∂

µAν .

(4.86)

So we have

∂L
∂(∂0Aµ)

= −1

2

∂

∂(∂0Aµ)
(∂ρ∂σ∂

ρ∂σ)

= −1

2
ηραησβ

∂

∂(∂0Aµ)
(∂ρAσ∂α∂β)

= −1

2
ηραησβ(δ0ρδµσ∂αAβ + ∂ρAσδ0αδµβ)

= −1

2

(
η0αηµβ∂αAβ + ηρ0ησµ∂ρAσ

)
= −1

2

(
∂0Aµ + ∂0Aµ

)
= −∂0Aµ.

(4.87)
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Then the Hamiltonian and 3-momentum densities are given as

H ≡ T 0
0 =

∂L
∂(∂0Aµ)

(∂0Aµ)− L

= −∂0Aµ∂0Aµ +
1

2
∂νAµ∂

νAµ

= −∂0Aµ∂0Aµ +
1

2

(
∂0Aµ∂

0Aµ + ∂iAµ∂
iAµ

)
=

1

2

(
∂iAµ∂

iAµ − ∂0Aµ∂
0Aµ

)
Pk ≡ T 0

k =
∂L

∂(∂0Aµ)
(∂kAµ)

= −∂kAµ∂0Aµ.

(4.88)

Taking the solution (4.81) with the normalization condition (4.82) for the polarization vectors, we can calculate
the Hamiltonian in the usual way and obtain

H =

∫
d3xH

=

∫
d3k

1

4

[
3∑

λ=1

(
Ãλ(k)Ã

∗
λ(k) + Ã∗

λ(k)Ãλ(k)
)
−
(
Ã0(k)Ã

∗
0(k) + Ã∗

0(k)Ã0(k)
)] (4.89)

We see that the scalar photons’ contribution to the total energy is negative and thus, the energy is not positive
definite. However, actually the Lorenz condition evaluated on the solution (4.81) gives

Ã0(k) = Ã3(k) (4.90)

so that the contribution from the unphysical states, the scalar photons and the longitudinal photons, cancel each
other in the Hamiltonian and what is left is

H =

∫
d3k

1

4

2∑
λ=1

(
Ãλ(k)Ã

∗
λ(k) + Ã∗

λ(k)Ãλ(k)
)
. (4.91)

Now the Hamiltonian is positive definite, as it should be.
For the 3-momentum, we get

Pi =

∫
d3k

ki
4ωk

2∑
λ=1

(
Ãλ(k)Ã

∗
λ(k) + Ã∗

λ(k)Ãλ(k)
)
. (4.92)

Finally, an important lesson: all gauge fixings are physically equivalent. i.e. if we do the same calculations again
in the Coulomb gauge, we will get the same results.
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5 Canonical Quantization of Scalar Fields

5.1 Real scalar fields

As we have seen previously, the Lagrangian for a real scalar field is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2, (5.1)

from which we can define the conjugate momentum as

Π(x) :=
∂L

∂(∂0φ)
= ∂0φ. (5.2)

The Hamiltonian density is then

H := Π(x)∂0φ− L =
1

2
Π2 +

1

2
(∂iφ)

2 +
1

2
m2φ2. (5.3)

Upon quantization, we promote the field φ(x) and the conjugate momentum Π(x) to operators φ̂(x) and Π̂(x)

(we will just write the operators without the hat from now on). In free quantum theory, we usually work in the
Heisenberg picture, where the field operators carry the time dependence. Then we impose the equal-time canonical
commutation relations: [

φ(x0,x),Π(x0,x′)
]
= iδ3(x− x′),[

φ(x0,x), φ(x0,x′)
]
= 0,[

Π(x0,x),Π(x0,x′)
]
= 0.

(5.4)

The two fields obey the Heisenberg equation1:

i∂0φ = [φ,H], i∂0Π = [Π,H], (5.5)

where H is the quantum Hamiltonian, written as

H =
1

2

∫
d3x

(
Π2 + ∂iφ∂iφ+m2φφ

)
. (5.6)

It is straightforward to show that

∂0∂0φ = −i[∂0φ,H] (from the Heisenberg equation)

= −i[Π,H] = ∂0Π (from the Heisenberg equation)

=
(
∂i∂i −m2

)
φ. (from Eq. (5.6))

(5.7)

Therefore, the field operator φ indeed obeys the KG equation, (�+m2)φ = 0, as the classical field. If we replace
the Fourier images in Eq. (4.10) by the following operators:

1√
2ωk

φ̃(k) → a(k),
1√
2ωk

φ̃∗(k) → a†(k), (5.8)

the general solution can be written as

φ(x) =

∫
d3k

(2π)3/2
√
2ωk

[
a(k)e−i(ωkx

0−k·x) + a†(k)ei(ωkx
0−k·x)

]
. (5.9)

The conjugate momentum is written as

Π(x) = ∂0φ(x) =

∫
d3k (iωk)

(2π)3/2
√
2ωk

[
−a(k)e−i(ωkx

0−k·x) + a†(k)ei(ωkx
0−k·x)

]
(5.10)

1See the discussion on the Schrodinger picture and the Heisenberg picture in Appendix.
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To obtain the commutation relations for the annihilation operator a(k) and the creation operator a†(k), we take
the partial Fourier transform of the field operator and its conjugate momentum:

φ(x0,k) =

∫
d3x

(2π)3
φ(x)e−ik·x

Π(x0,k) =

∫
d3x

(2π)3
Π(x)e−ik·x

(5.11)

and use the integral form of the δ-function:

δ3(k− k′) =

∫
d3x

(2π)3
e−i(k−k′)·x. (5.12)

Then we have (plugging Eqs. (5.9) and (5.10) into Eq. (5.11))

φ(x0,k) =
1

(2π)3/2
√
2ωk

[
a(k)e−iωkx

0

+ a†(−k)eiωkx
0
]

(5.13)

and
Π(x0,k) =

iωk

(2π)3/2
√
2ωk

[
−a(k)e−iωkx

0

+ a†(−k)eiωkx
0
]
. (5.14)

Hence, from the two equation above we have

a(k) =

∫
d3x

(2π)3/2

√
ωk

2

[
φ(x) +

i

ωk
Π(x)

]
eiωkx

0−ik·x (5.15)

and

a†(k) =

∫
d3x

(2π)3/2

√
ωk

2

[
φ(x)− i

ωk
Π(x)

]
e−iωkx

0+ik·x. (5.16)

Now we can compute the following commutator:

[
a(k), a†(k′)

]
=

∫
d3x d3x′

(2π)3

√
ωkωk′

2

[(
φ(x0,x) +

i

ωk
Π(x0,x)

)
,

(
φ(x0,x′)− i

ωk
Π(x0,x′)

)]
ei(ωk−ωk′ )x0

e−ik·x+ik
′·x′

=

∫
d3x d3x′

(2π)3

√
ωkωk′

2

{
1

ωk′

[
Π(x0,x′), φ(x0,x)

]︸ ︷︷ ︸
= −iδ3(x′ − x)

+
1

ωk

[
Π(x0,x), φ(x0,x′]︸ ︷︷ ︸
= −iδ3(x− x′)

}

ei(ωk−ωk′ )x0

e−ik·x+ik
′·x′

=

∫
d3x

(2π)3

√
ωkωk′

2

(
1

ωk′
+

1

ωk

)
ei(ωk−ωk′ )x0

e−i(k−k′)·x

=

√
ω2
k

2

(
2

ωk

)
ei(ωk−ωk)x

0

∫
d3x

(2π)3
e−i(k−k′)·x (assuming ωk′ = ωk)

= δ3(k− k′).

(5.17)

Similarly we obtain the other two commutation relations

[a(k), a(k′)] =
[
a†(k), a†(k′)

]
= 0. (5.18)

5.2 Zero point energy and normal ordering

We first look at the set of single-particle states. The ground state (with minimum energy) is defined as the state
annihilated by all the annihilation operators:

a(k) |0〉 = 0, ∀ k. (5.19)
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The one-particle state with momentum k can be created from the the ground state by a creation operator:

|k〉 = a†(k) |0〉 . (5.20)

Using the commutation relation (5.17), we can write the norm between two states as

〈k′|k〉 = 〈0|a(k′)a†(k)|0〉
= 〈0|a†(k)a(k)|0〉+ δ3(k− k′) 〈0|0〉
= δ3(k− k′),

(5.21)

where we use Eq. (5.19) and the normalization condition: 〈0|0〉 = 1 in the last line. What we obtain above is
exactly the orthonormality condition.
The corresponding completeness condition is ∫

d3k |k〉 〈k| = 1. (5.22)

We can continuously apply creation operators a†(k1), a
†(k2), · · · to create multi-particle states:

|k1,k2, · · ·〉 = a†(k1)a
†(k2) · · · |0〉 . (5.23)

A general state could have multiple applications of creation operators with the same momenta, in which case it is
convenient to normalize the state with a symmetry factor:

|{nki
}〉 := |nk1

, nk2
, · · ·〉 = |k1, · · · ,k1︸ ︷︷ ︸

nk1

,k2, · · · ,k2︸ ︷︷ ︸
nk2

, · · ·〉 =
∏
i

[
a†(ki)

]nki

√
nki

|0〉 , (5.24)

where nki is the number of times the creation operator with label ki is applied. The Hilbert space spanned by the
set of all possible states is called the Fock space. The basis states are interpreted as multi-particle states.
Define a new set of operators by

n(k) = a†(k)a(k). (5.25)

When acting on the ground state, it gives

n(k) |0〉 = a†(k)a(k) |0〉 = 0. (5.26)

When acting on one-particle state, it gives

n(k) |k′〉 = a†(k)a(k) |k′〉
= a†(k)a(k)a†(k′) |0〉
= a†(k)

[
a†(k′)a(k) + δ3(k− k′)

]
|0〉

= δ3(k− k′)a†(k) |0〉
= δ3(k− k′) |k〉 ,

(5.27)

where we have used the commutation relation to change the order of a(k) and a†(k′). We can proceed with
n-particle states and observe that n(k) serves as a particle number density operator. Thus, the particle number
operator, which tells us the total number of particles in a particular state, can be defined as

N =

∫
d3k n(k) =

∫
d3k a†(k)a(k). (5.28)
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For example,

N |0〉 = 0

N |k′〉 =
∫
d3k n(k) |k′〉 = 1 |k′〉

N |{nki
}〉 =

∑
i

nki
|{nki

}〉 .

(5.29)

Energy of the states can be computed from the quantum Hamiltonian operator Eq. (5.6), which can be expressed
in terms of creation and annihilation operators using the expansions of the field and conjugate momentum operators
Eqs. (5.9) and (5.10):

H =

∫
d3k

ωk

2

[
a†(k)a(k) + a(k)a†(k)

]
=

∫
d3k

ωk

2

[
2a†(k)a(k) + δ3(0)

]
.

(5.30)

We see that we run into a problem when we try to change the order of operators because the integral of δ3(0) is
divergent (we are working in a infinite spatial volume)! Let the Hamiltonian operator act on the ground state

H |0〉 =
∫
d3k

ωk

2

[
2a†(k)a(k) + δ3(0)

]
|0〉 =

∫
d3k

ωk

2
δ3(0) |0〉 , (5.31)

and thus, we can interpret
∫
d3k ωk

2 δ
3(0) as the ground energy, which is infinite. However, the physical argument

is that the absolute values of energy have no physical meaning, only the energy difference is the quantity which we
can measure in experiments. So we can define a new, renormalized (physical) Hamiltonian:

Hren = H −
∫
d3k

ωk

2
δ3(0)

=

∫
d3k ωka

†(k)a(k)

=

∫
d3k ωkn(k),

(5.32)

with Hren |0〉 = 0.
We can subtract off the ground state energies automatically by a procedure known as the normal ordering, which
is to place all the creation operators to the left, and all the annihilation operators to the right. For example,

N
[
a(k)a†(k)

]
= a†(k)a(k). (5.33)

Hence, N[H] = Hren.
We can compute the energy of a one-particle state:

Hren |k〉 =
∫
d3k′ ωk′n(k′) |k〉

=

∫
d3k′ ωk′δ3(k′ − k) |k′〉

= ωk |k〉 ,

(5.34)

where in the second line we have used Eq. (5.27). Hence, the energy of the one-particle state |k〉 is ωk. Recall that
ωk =

√
k2 +m2 is the energy of a relativistic particle of mass m and momentum k.

Similarly, the momentum operator is

Pk =

∫
d3k kkn(k). (5.35)

When acting on a single-particle state |k〉, it gives

Pk |k〉 =
∫
d3k′ kkn(k

′) |k〉 = kk |k〉 . (5.36)
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5.3 Complex scalar fields and antiparticles

To quantize a complex scalar field, we replace the Fourier images in the solutions (4.18) to the two classical KG
equations (4.17) by the operators (remember that φ̃(k) and φ̃(−k) are independent):

1√
2ωk

φ̃(k) → a(k),
1√
2ωk

φ̃(−k) → b†(k)

1√
2ωk

φ̃∗(k) → a†(k),
1√
2ωk

φ̃∗(−k) → b(k).

(5.37)

Since the classical field is now complex, the quantum field is not Hermitian:

φ(x) =

∫
d3k

(2π)3/2
√
2ωk

[
a(k)e−i(ωkx

0−k·x) + b†(k)ei(ωkx
0−k·x)

]
φ†(x) =

∫
d3k

(2π)3/2
√
2ωk

[
b(k)e−i(ωkx

0−k·x) + a†(k)ei(ωkx
0−k·x)

]
.

(5.38)

For complex scalar fields, the commutation relations for the creation and annihilation operators (now there are two
sets) are [

a(k), a†(k′)
]
=
[
b(k), b†(k′)

]
= δ3(k− k′). (5.39)

All the other commutators are equal to zero.

What do the two sets of creation and annihilation operators correspond to? We can work out the renormalized
charge operator:

Qren = e

∫
d3k N

[
a†(k)a(k)− b(k)b†(k)

]
= e

∫
d3k

[
a†(k)a(k)− b†(k)b(k)

]
.

(5.40)

On the other hand, the renormalized Hamiltonian is

Hren =

∫
d3k ωk

[
a†(k)a(k) + b†(k)b(k)

]
. (5.41)

Hence, a†(k) and b†(k) can be interpreted as creation operators for particles and antiparticles, respectively. Thus,
the quantum theory of complex scalar fields predicts the existence of antiparticles.
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6 Canonical Quantization of Electromagnetic Fields

6.1 Quantization in the Coulomb gauge

Coulomb gauge conditions:
A0 = 0, ∂iA

i = 0. (6.1)

Then the Lagrangian of the electromagnetic field (see Eq. (4.86)) in the Coulomb gauge is

LCG ≡− 1

2
(∂µAν∂

µAν − ∂µAν∂
νAµ)

=− 1

2

(
∂µAi∂

µAi − ∂iAj∂
jAi
)

(A0 = 0)

=− 1

2

(
∂0Ai∂

0Ai + ∂jAi∂
jAi −�����

∂jAj∂iA
i
)

=− 1

2

(
∂0Ai∂

0Ai + ∂jAi∂
jAi
)
.

(6.2)

Then the momentum conjugate to Ai is

Πi :=
∂L

∂(∂0Ai)

=− ∂0Ai = −F 0i = Ei,

(6.3)

and the Hamiltonian density is

H :=Πi∂0Ai − L

=− 1

2
∂0Ai∂

0Ai +
1

2
∂jAi∂

jAi

=
1

2
(∂0Ai∂0Ai + ∂jAi∂jAi).

(6.4)

The canonical commutation relations in the Coulomb guage are somewhat unusual (to be consistent with the
Coulomb gauge condition):

[
Ai(x0,x),Πj(x0,x′)

]
= i

∫
d3k

(2π)3

(
δij − kikj

k2

)
eik·(x−x′) = i

(
δij − ∂i∂j

∇2

)
δ3(x− x′). (6.5)

As usual, we define the creation and annihilation operators by replacing the Fourier images in the classical solution
Eq. (4.76) by:

1√
2ωk

Ãλ(k) → aλ(k),
1√
2ωk

Ã∗
λ(k) → a†λ(k). (6.6)

Thus the quantum EM field in the Coulomb gauge is

Ai(x) =

∫
d3k

(2π)3/2
√
2ωk

2∑
λ=1

εiλ(k)
[
aλ(k)e

−i(ωkx
0−k·x) + a†λ(k)e

i(ωkx
0−k·x)

]
(6.7)

To obtain the commutation relations for the creation and annihilation operators, we need to use the commutation
relation (6.5). First, we write down the conjugate momentum as

Πi(x) = −∂0Ai =
∫

d3k (iωk)

(2π)3/2
√
2ωk

2∑
λ=1

εiλ(k)
[
−aλ(k)e−i(ωkx

0−k·x) + a†λ(k)e
i(ωkx

0−k·x)
]
. (6.8)
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Similarly to Eq. (5.10), we take the partial Fourier transform of Ai(x) and Πi(x):

Ai(x0,k) =

∫
d3x

(2π)3
Ai(x)e−ik·x

Πi(x0,k) =

∫
d3x

(2π)3
Πi(x)e−ik·x.

(6.9)

Then we have

Ai(x0,k) =

∫
d3x d3k′

(2π)3(2π)3/2
√
2ωk′

2∑
λ=1

εiλ(k
′)
[
aλ(k

′)e−iωk′x0

e−i(k−k′)·x + a†λ(k
′)eiωk′x0

e−i(k+k′)·x
]

=

∫
d3x d3k′

(2π)3(2π)3/2
√
2ωk′

2∑
λ=1

[
εiλ(k

′)aλ(k
′)e−iωk′x0

e−i(k−k′)·x + εiλ(−k′)a†λ(−k′)eiωk′x0

e−i(k−k′)·x
]

(
Note: δ3(k− k′) =

∫
d3x

(2π)3
e−i(k−k′)·x

)
=

1

(2π)3/2
√
2ωk

2∑
λ=1

[
εiλ(k)aλ(k)e

−iωkx
0

+ εiλ(−k)a†λ(−k)eiωkx
0
]
.

(6.10)

Similarly,

Πi(x0,k) =
iωk

(2π)3/2
√
2ωk

2∑
λ=1

[
−εiλ(k)aλ(k)e−iωkx

0

+ εiλ(−k)a†λ(−k)eiωkx
0
]
. (6.11)

We adopt the following normalization conditions for the polarization vectors

εiλ(k)ε
i
λ′(k) = δλλ′ ,

εiλ(−k)εiλ′(−k) = δλλ′ ,

εiλ(k)ε
i
λ′(−k) = (−1)

λ
δλλ′ .

(6.12)

Multiplying both sides of Eqs. (6.10) and (6.11) by εiλ(k), we have

εiλ(k)A
i(x0,k) =

1

(2π)3/2
√
2ωk

[
aλ(k)e

−iωkx
0

+ (−1)λa†λ(−k)eiωkx
0
]

εiλ(k)Π
i(x0,k) =

iωk

(2π)3/2
√
2ωk

[
−aλ(k)e−iωkx

0

+ (−1)λa†λ(−k)eiωkx
0
]
.

(6.13)

Then

aλ(k) =
(2π)3/2

√
2ωk

2
εiλ(k)

[
Ai(x0,k) +

i

ωk
Πi(x0,k)

]
eiωkx

0

=

∫
d3x

(2π)3
(2π)3/2

√
2ωk

2
εiλ(k)

[
Ai(x) +

i

ωk
Πi(x)

]
eiωkx

0−ik·x

=

∫
d3x

(2π)3/2

√
ωk

2
εiλ(k)

[
Ai(x) +

i

ωk
Πi(x)

]
eiωkx

0−ik·x,

(6.14)

where in the second line, we have used Eq. (6.9).
Similarly, to obtain an expression for a†λ(k), we multiply both sides of Eqs. (6.10) and (6.11) by εiλ(−k),

εiλ(−k)Ai(x0,k) =
1

(2π)3/2
√
2ωk

[
(−1)λaλ(k)e

−iωkx
0

+ a†λ(−k)eiωkx
0
]

εiλ(−k)Πi(x0,k) =
iωk

(2π)3/2
√
2ωk

[
−(−1)λaλ(k)e

−iωkx
0

+ a†λ(−k)eiωkx
0
]
.

(6.15)

33



Therefore,

a†λ(−k) =
(2π)3/2

√
2ωk

2
εiλ(−k)

[
Ai(x0,k)− i

ωk
Πi(x0,k)

]
e−iωkx

0

=

∫
d3x

(2π)3/2

√
ωk

2
εiλ(−k)

[
Ai(x)− i

ωk
Πi(x)

]
e−iωkx

0−ik·x

=⇒ a†λ(k) =

∫
d3x

(2π)3/2

√
ωk

2
εiλ(k)

[
Ai(x)− i

ωk
Πi(x)

]
e−iωkx

0+ik·x.

(6.16)

Now we can construct the commutator for aλ(k) and a†λ′(k′):

[
aλ(k), a

†
λ′(k

′)
]
=

∫
d3x d3x′

(2π)3

√
ωkωk′

2
εiλ(k)ε

j
λ′(k

′)

[
Ai(x0,x) +

i

ωk
Πi(x0,x), Aj(x0,x′)− i

ωk′
Πj(x0,x′)

]
e−i(ωk′−ωk)x

0

e−i(k·x−k′·x′)

=

∫
d3x d3x′

(2π)3

√
ωkωk′

2

εiλ(k)ε
j
λ′(k′)

i

{
1

ωk′

[
Ai(x0,x),Πj(x0,x′)

]︸ ︷︷ ︸
=i(δij−∂i∂j/∇2)δ3(x−x′)

+
1

ωk

[
Aj(x0,x′),Πi(x0,x)

]︸ ︷︷ ︸
=i(δji−∂j∂i/∇2)δ3(x′−x)

}

e−i(ωk′−ωk)x
0

e−i(k·x−k′·x′)

=

∫
d3x

(2π)3

√
ωkωk′

2

(
1

ωk′
+

1

ωk

)
εiλ(k)ε

j
λ′(k

′)

(
δij − ∂i∂j

∇2

)
e−i(ωk′−ωk)x

0

e−i(k−k′)·x.

(6.17)

Notice that

∂i∂j
[
e−i(k−k′)·x

]
εiλ(k)ε

j
λ′(k

′)

=− (ki − k′i)ε
i
λ(k)

(
kj − k′j

)
εjλ′(k

′)e−i(k−k′)·x

=− k′iε
i
λ(k) k

′
jε
j
λ′(k

′)e−i(k−k′)·x, (since kiεiλ(k) = 0)

(6.18)

and then ∫
d3x

(2π)3
e−i(k−k′)·x︸ ︷︷ ︸

= δ3(k− k′)

(
k′iε

i
λ(k)

)(
k′jε

j
λ′(k

′)
)
= 0 (6.19)

because if k 6= k′, δ3(k − k′) = 0 and the integral is zero. But if k = k′, then k′iε
i
λ(k) = kiε

i
λ(k) = 0 and

k′jε
j
λ′(k′) = kjε

j
λ′(k′) = 0. Thus the integral is zero for any k and k′.

So Eq. (6.17) becomes[
aλ(k), a

†
λ′(k

′)
]
=

√
ωkωk′

2

(
1

ωk′
+

1

ωk

)
e−i(ωk′−ωk)x

0

εiλ(k)ε
i
λ′(k′)δ3(k− k′)

=
ωk

2

2

ωk
e−i(ωk−ωk)x

0︸ ︷︷ ︸
= e0 = 1

εiλ(k)ε
i
λ′(k)︸ ︷︷ ︸

= δλλ′

δ3(k− k′) (k = k′ is non-vanishing)

= δλλ′δ3(k− k′).

(6.20)

Therefore, we obtain the commutation relation for the creation and annihilation operators in the Coulomb gauge:[
aλ(k), a

†
λ′(k

′)
]
= δλλ′δ3(k− k′). (6.21)

Other commutators give zeroes.
The renormalized Hamiltonian is

Hren =

∫
d3k ωk

2∑
λ=1

a†λ(k)aλ(k). (6.22)
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6.2 Quantization in the Lorenz gauge

According to the standard definition, the conjugate momentum of the vector field Aµ(x) is

Πµ(x) :=
∂L

∂(∂0Aµ)
= −F 0µ. (6.23)

This means thatA0 component does not have a canonical momentum, as Π0 = −F 00 is identically zero. However,
in the covariant quantization all four components of Aµ and Πµ should be brought into play. To achieve this, we
will need to change the initial Lagrangian for the EM field to find Π0 that does not vanish. The only reasonable
change is such that it incorporates the covariant gauge condition ∂µAµ, and hence gives the equation of motion in
the Lorenz gauge (4.80).The Lagrangian that does the job is

LLG = −1

4
FµνF

µν − 1

2
∂µA

µ∂νA
ν , (6.24)

where the 2nd term (extra term) is called the gauge-fixing term. This gauge is also called the Feynman gauge.
From the Lagrangian we calculate the canonical conjugate momentum to be

Πµ =
∂L

∂(∂0Aµ)
= −F 0µ − ηµ0(∂µA

µ). (6.25)

So we have
Π0 = −∂µAµ, (6.26)

and Πi = −F 0i as before.
Furthermore, we can use integration by parts to rewrite the Lorenz gauge Lagrangian as

LLG = −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ − 1

2
∂µA

µ∂νA
ν

= −1

2
∂µAν∂

µAν +
1

2
∂µ[Aν(∂

νAµ)− (∂νA
ν)Aµ]

(6.27)

so that the last term is a four-divergence which has no influence on the field equations. Thus the dynamics of the
EM field in the Lorenz gauge can be described by the simple Lagrangian

L′
LG = −1

2
∂µAν∂

µAν . (6.28)

Then the canonical conjugate momentum is just given by

Πµ =
∂L′

LG

∂(∂0Aµ)
= −∂0Aµ. (6.29)

Now it is time to impose the Lorenz gauge condition. Unfortunately, the old condition ∂µAµ does not work
because it would make the conjugate momentum in Eq. (6.26) vanish again. So we impose a weaker condition
that, for any physical state |ψ〉, the expectation value of the operator ∂µAµ is zero, i.e.

〈ψ|∂µAµ|ψ〉 = 0. (6.30)

This is also called the Gupta-Bleuler quantization condition. More precisely, given the Fock space F , we define
the subset F ′ of physical states as the states |ψ〉 satisfying Eq. (6.30). We stress that the above condition is not a
constraint on the field Aµ, but a restriction of the states of F : only a subset of them (physical states) is selected.
Similar to Eq. (6.7), the field expansion is written as

Aµ(x) =

∫
d3k

(2π)3/2
√
2ωk

3∑
λ=0

εµλ(k)
[
aλ(k)e

−i(ωkx
0−k·x) + a†λ(k)e

i(ωkx
0−k·x)

]
. (6.31)
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We introduce the equal-time commutation relations in the Lorenz gauge:[
Aµ(x0,x),Πν(x0,x′)

]
= iηµνδ3(x− x′)[

Aµ(x0,x), Aν(x0,x′)
]
=
[
Πµ(x0,x),Πν(x0,x′)

]
= 0.

(6.32)

Using Eq. (6.29) as the conjugate momentum and following the same procedure as in the case of Coulomb gauge,
we can obtain the commutation relations for the creation and annihilation operators in the Lorenz gauge:[

aλ(k), a
†
λ′(k

′)
]
= −ηλλ′δ3(k− k′)[

aλ(k), aλ′(k′)
]
=
[
a†λ(k), a

†
λ′(k

′)
]
= 0.

(6.33)

We can decompose the field operator Aµ(x) into positive (Aµ+) and negative (Aµ−) frequency modes:

Aµ+(x) =

∫
d3k

(2π)3/2
√
2ωk

3∑
λ=0

εµλ(k)
[
aλ(k)e

−i(ωkx
0−k·x)

]
Aµ−(x) =

∫
d3k

(2π)3/2
√
2ωk

3∑
λ=0

εµλ(k)
[
a†λ(k)e

i(ωkx
0−k·x)

]
.

(6.34)

Then the gauge condition implies

〈ψ|∂µAµ|ψ〉 = 0 = 〈ψ|
(
∂µA

µ
+ + ∂µA

µ
−
)
|ψ〉

=⇒ 〈ψ|∂µAµ+|ψ〉 = −〈ψ|∂µAµ−|ψ〉 =
(
〈ψ|∂µAµ+|ψ〉

)∗
=⇒ ∂µA

µ
+ |ψ〉 = 0.

(6.35)

In turn, this condition implies
3∑

λ=0

[
kiε

i
λ(k) + ωkε

0
λ(k)

]
aλ(k) |ψ〉 = 0, (6.36)

which, in view of kµε
µ
1,2 = 0, gives[(
kiε

i
0(k) + ωkε

0
0(k)

)
a0(k) +

(
kiε

i
3(k) + ωkε

0
3(k)

)
a3(k)

]
|ψ〉 = 0. (6.37)

Finally, combining kµε
µ
1,2 = 0 with Eq. (4.83), we have kµε

µ
0 + kµε

µ
3 = 0, i.e.(

kiε
i
0(k) + ωkε

0
0(k)

)
= −

(
kiε

i
3(k) + ωkε

0
3(k)

)
. (6.38)

Then we obtain
[a0(k)− a3(k)] |ψ〉 = 0. (6.39)

Hence,
〈ψ|
[
a†0(k)a0(k)− a†3(k)a3(k)

]
|ψ〉 = 0, (6.40)

suggesting that the contributions to the quantum Hamiltonian of the EM field from the scalar and longitudinal
photons are canceled out, leaving only the contributions from the transverse (physical) photons.
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7 Canonical Quantization of Dirac Fields

7.1 Quantization with anti-commutation relations

The first step to quantize the Dirac field is the familiar procedure of replacing the Fourier images of Eqs. (4.47)
and (4.48) by the creation and annihilation operators:

1√
2ωk

cs(k) → cs(k),
1√
2ωk

ds(−k) → d†s(k). (7.1)

Since the Dirac field is complex, we have two sets of creation and annihilation operators. Then the positive and
negative frequency modes can be written as

ψ+(x) =

∫
d3k

(2π)3/2
√
2ωk

∑
s

cs(k)us(k)e
−i(ωkx

0−k·x)

ψ−(x) =

∫
d3k

(2π)3/2
√
2ωk

∑
s

d†s(k)vs(−k)ei(ωkx
0−k·x).

(7.2)

Therefore, the full quantum Dirac field is the sum of them

ψ(x) =

∫
d3k

(2π)3/2
√
2ωk

∑
s

[
cs(k)us(k)e

−i(ωkx
0−k·x) + d†s(k)vs(−k)ei(ωkx

0−k·x)
]
. (7.3)

Similarly, the Dirac adjoint of the field is

ψ(x) = ψ+(x) + ψ−(x)

=

∫
d3k

(2π)3/2
√
2ωk

∑
s

[
ds(k)vs(−k)e−i(ωkx

0−k·x) + c†s(k)us(k)e
i(ωkx

0−k·x)
]
.

(7.4)

The conjugate momentum to the Dirac field operator is also straightforward to find:

Π(x) :=
∂L

∂(∂0ψ)
= iψ(x)γ0 = iψ†(x). (7.5)

Here comes the key difference from the case of quantizing bosonic fields: instead of the commutation relations,
we need to impose the anti-commutation relations to the Dirac fields:{

ψ(x0,x), ψ†(x0,x′)
}
= δ3(x− x′){

ψ(x0,x), ψ(x0,x′)
}
=
{
ψ†(x0,x), ψ†(x0,x′)

}
= 0.

(7.6)

Then the anti-commutation relations among the creation and annihilation operators follow{
cs(k), c

†
s′(k

′)
}
= δss′δ

3(k− k′){
ds(k), d

†
s′(k

′)
}
= δss′δ

3(k− k′),
(7.7)

and all the other anti-commutators are equal to zero.

The effects of anti-commutation relations we have imposed above can be seen immediately. First recall that,
when discussing the classical Dirac field, we encountered a problem where the negative frequency modes had
negative contribution to the Hamiltonian so that the total Hamiltonian is not positive definite. The anti-commutation
relations here solve this problem. Due to the anti-commutation relations, each change in the order of two spinor
operators under the operation of normal ordering gives an extra minus sign compared to the case of bosonic
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operators. Therefore, the normal-ordered (physical) Hamiltonian now becomes (refer to Eq. (4.52))

Hren =

∫
d3k ωk

∑
s

N
[
c†s(k)cs(k)− ds(k)d

†
s(k)

]
=

∫
d3k ωk

∑
s

[
c†s(k)cs(k) + d†s(k)ds(k)

]
.

(7.8)

Thus the anti-commutation relations indeed ensure that the physical Hamiltonian is positive definite.
We can also calculate the renormalized (normal-ordered) charge operator from the corresponding classical expres-
sion Eq. (4.57):

Qren = e

∫
d3k

∑
s

N
[
c†s(k)cs(k) + ds(k)d

†
s(k)

]
= e

∫
d3k

∑
s

[
c†s(k)cs(k)− d†s(k)ds(k)

]
.

(7.9)

7.2 Spin-statistics relation and probabilities in QFT

Consider a state of two bosonic particles with momenta k1 and k2:

|k1,k2〉 = a†(k1)a
†(k2) |0, 0〉

= a†(k2)a
†(k1) |0, 0〉

= |k2,k1〉 .
(7.10)

This shows that the quantum state is symmetric under the exchange of bosonic particles. This symmetry is known
as the Bose symmetry, which stems from the canonical commutation relations of the bosonic field operators.
Now consider two Dirac particles with momenta k1, k2 and spins s1, s2, respectively. The two-particle state is
labelled as |k1, s1;k2, s2〉. We have

|k1, s1;k2, s2〉 = c†s1c
†
s2 |0, 0〉

= −c†s2c
†
s1 |0, 0〉

= − |k2, s2;k1, s1〉 .
(7.11)

Thus, under the exchange of two Dirac particles, the two-particle state changes the sign. This is the so-called
Fermi-Dirac symmetry, and the particles satisfying this property are called fermions. The Pauli exclusion principle
immediately follows from Eq. (7.11), which is in turn resulted from the anti-commutation relations. Indeed, the
state with two (or more) fermions with the same mass and momentum k1 = k2 and the same spin polarizations
s1 = s2 does not exist because |k, s;k, s〉 = 0.
Conclusion: The consistent quantization requires to use commutation relations for the bosonic fields and anti-
commutation relations for the fermionic fields. This is known as the spin-statistics relation.

In relativistic quantum mechanics, there is a problem with the relativistic probability: it is not positive definite
for the complex fields and trivially vanishes for the real fields. The reason is that we treated the fields as wave
functions of single-particle states in quantum mechanics. However, in QFT, the fields are operators and the wave
functions are defined as expectation values of these operators. Consider a real scalar field, we can calculate the
wave function corresponding to a single-particle state:

Φ(x) = 〈0|φ(x)|k〉

=

∫
d3k′

(2π)3/2
√
2ωk′

[
〈0|a(k′)|k〉 e−i(ωk′x0−k′·x) + 〈0|a†(k′)|k〉 ei(ωk′x0−k′·x)

]
=

∫
d3k′

(2π)3/2
√
2ωk′

〈k′|k〉︸ ︷︷ ︸
=δ3(k−k′)

e−i(ωk′x0−k′·x)

=
d3k′

(2π)3/2
√
2ωk

e−i(ωkx
0−k·x),

(7.12)

38



where in the third line we have used 〈0| a(k′) =
(
a†(k′) |0〉

)∗
= 〈k′| and 〈0| a†(k′) = (a(k′) |0〉)∗ = 0.

Now the relativistic probability density is

ρ = i
(
Φ∗∂0Φ− Φ∂0Φ∗). (7.13)

Using Eq. (7.12) we find

ρ =
1

(2π)3
, (7.14)

which is non-zero and positive! This is the probability to find a spinless particle within a unit volume.
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8 Interaction Fields

8.1 Some examples of interacting theories

So far we have dealt with free field theories, which we are able to solve exactly. However, the dynamics of a free
field theory is rather trivial: one decides which state (or superposition of states) the field is in at some initial time,
and the field will remain in the same state for all subsequent times. Moreover, free fields are metaphysical objects
as they are not detected in experiments. Therefore, we are more interested in more realistic situations where the
fields interact with each other.

Self-interacting scalar field

We denote the free Lagrangian of a scalar field given by Eq. (4.1) by L0. We can add an arbitrary function of
the scalar field V (φ) to L0, which is automatically invariant under the Poincare transformations. The simplest
possibility is the polynomial interactions:

V (φ) =
λ3
3!
φ3 +

λ4
4!
φ4 + · · ·+ λn

n!
φn. (8.1)

The parameters λk, known as the coupling constants, dictates the strength of the corresponding k-scalar inter-
actions. Note that the coupling constants λk with k > 4 have negative mass dimensions. If we assume that
λk ∼ M4−k, where M is the typical mass scale of a theory, and |φ| � M , then all the terms with k > 4 can be
ignored compared with the cubic and quartic interactions because they are suppressed by the heavy mass scale M .
It turns out that upon quantization, only the cubic and quartic interactions give a theory which can be extrapolated
to an arbitrary high energy scale.
Let us consider the φ4-theory, i.e. V (φ) = λ

4!φ
4, where λ := λ4. Then the Lagrangian is

L = L0 + LI =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (8.2)

Using the EL equation, we find that the equation of motion for this theory is

(�+m2)φ = − λ

3!
φ3. (8.3)

This equation, unlike the KG equation for a free scalar field, cannot be solved analytically!
We can also calculate the Hamiltonian density for the φ4-theory:

H = H0 +HI , (8.4)

where
H0 =

1

2

[
(∂0φ)

2 + (∂iφ)
2 +m2φ2

]
(8.5)

and
HI = −LI =

λ

4!
φ4. (8.6)

Yukawa interactions

The Yukawa interactions are the couplings between scalar fields and fermion fields. We can write down a simple,
relativistically invariant interacting Lagrangian (a Lorentz scalar) between scalar and Dirac fields as:

LI = yψψφ, (8.7)

where y is the coupling constant known as the Yukawa coupling.
We have the following interaction Hamiltonian density:

HI = −LI = −yψψφ. (8.8)
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If we take the pseudoscalar scalar field ϕ intead of the scalar field and assume that the spatial inversion is a symme-
try of the theory, we should couple the pseudoscalar to the combination of fermion fields which are pseudoscalars
as well. The simplest such combination is ψγ5ψ, and thus the interaction Lagrangian has the form

LI = gψγ5ψϕ, (8.9)

where g is the coupling constant. This Lagrangian describes the interaction between the particles known as pions
(pseudoscalars) and nucleons (protons + neutrons, which are fermions).

Interactions of fermions with gauge fields

It appears that all elementary matter fields observed so far in experiments are spin-1/2 fermions, while the fields
which mediate fundamental interactions (gauge bosons except gravitons) are spin-1 vectors. Moreover, an im-
portant experimental fact is that the interactions of spinor fields with vector fields are not arbitrary but respect
symmetries, namely the gauge symmetries. Recall that the Lagrangian for free EM fields Aµ(x) is invariant under
the gauge U(1) transformations:

δAµ = ∂µα(x). (8.10)

Also recall that the Lagrangian for free Dirac fields is invariant under the global U(1) transformations. Now
consider making these transformation local (i.e. position-dependent):

ψ(x) → e−ieα(x)ψ(x), ψ(x) → eieα(x)ψ(x), (8.11)

or in the infinitesimal form,
δψ = −ieα(x)ψ, δψ = ieα(x)ψ, (8.12)

and try to write down an interaction Lagrangian between Dirac fermions and EM field so that the full Lagrangian
of the system is invariant under the gauge transformations Eq. (8.10) and (8.12). It turns out that the interaction
Lagrangian we are looking for has the form

LI = −eψγµψAµ. (8.13)

Let us check.
Under the gauge transformations Eq. (8.10) and (8.12) the interaction Lagrangian transforms as

δLI = δ
(
−eψγµψAµ

)
= −e(δψ)γµψAµ − eψγµ(δψ)Aµ − eψγµψ(δAµ)

= (((((((((
−e
(
ieα(x)ψ

)
γµψAµ((((((((((

−eψγµ(−ieα(x)ψ)Aµ − eψγµψ(∂µα(x))

= −eψγµψ(∂µα(x)).

(8.14)

And the free Dirac Lagrangian transforms as

δLD = δ(iψγµ∂µψ −mψψ)

= i
(
δψ
)
γµ∂µψ + iψγµ∂µ(δψ)−m

(
δψ
)
ψ −mψ(δψ)

= (((((((
−eα(x)ψγµ∂µψ + eψγµψ(∂µα(x))(((((((

+eψγµα(x)∂µψ
hhhhhhh−iemα(x)ψψhhhhhhh+iemα(x)ψψ

= +eψγµψ(∂µα(x)) = −δLI .

(8.15)

Therefore, the variation of the free Dirac Lagrangian exactly cancels out the variation of the interaction Lagrangian
under the gauge transformations. So if we write the full Lagrangian as

L = LD + LM + LI , (8.16)

where LD = iψγµ∂µψ −mψψ and LM = − 1
4F

µνFµν are the free Lagrangians for the massive Dirac field and
the EM field, respectively, it will be invariant under the gauge transformations Eq. (8.10) and (8.12).
We can combine the interaction term LI with the kinetic part of LD by introducing the so-called covariant deriva-

41



tive:
Dµ = ∂µ + ieAµ. (8.17)

Hence, the formal rule to make a theory gauge invariant is to replace the ordinary derivatives by the covariant ones.

8.2 The interaction picture and the S-matrix

Usually, the goal of interaction theories is to calculate the quantum mechanical amplitude for some initial state to
change into some final state. From this we can calculate the transition probability, which is eventually expressed
as a cross-section. Unfortunately, it is almost always impossible to calculate these probabilities exactly, and one
must use a perturbation expansion in some small number which parameterizes the strength of the interaction -
a coupling constant. The perturbation theory that we are going to consider below is only applicable when this
coupling constant is small. Moreover, as we will see in next chapter, these perturbation expansions can be written
down in a graphical way with the so-called Feynman diagrams.

Let us first recall some results from ordinary time-dependent perturbation theory in quantum mechanics. For
interaction fields, we tend to work with the interaction picture.
Consider the following Hamiltonian:

H(t) = H0 +Hint(t), (8.18)

where H0 = p2/2m represents the kinetic energy and is independent of time, while Hint(t) corresponds to the
interaction potential that is dependent on time.
The time evolution operator U(t, t0) satisfies the following equation (as in the Schrodinger picture U(t) =

e−iHt/~),
∂U(t, t0)

∂t
= (−iH/~)U(t, t0) = (−iH0/~)U(t, t0)− (iHint/~)U(t, t0). (8.19)

We introduce an operator UI(t, t0), which is defined as

UI(t, t0) = eiH0(t−t0)/~U(t, t0). (8.20)

Taking the time derivative gives

∂UI(t, t0)

∂t
=

(
i
H0

~

)
eiH0(t−t0)/~U(t, t0) + eiH0(t−t0)/~ ∂U(t, t0)

∂t

=

(
− i

~

)
eiH0(t−t0)/~Hint(t)e

−iH0(t−t0)/~UI(t, t0).

(8.21)

Therefore, we can define
HI(t) = eiH0(t−t0)/~Hinte

−iH0(t−t0)/~ (8.22)

as the interaction Hamiltonian in the interaction picture. Eq. (8.21) then reads

∂UI(t, t0)

∂t
= − i

~
HI(t)UI(t, t0). (8.23)

Since U(t0, t0) = 1, we must have UI(t0, t0) = 1. Integrating both sides of the equation above gives

UI(t, t0) = 1− i

~

∫ t

t0

dt′HI(t
′)UI(t

′, t0). (8.24)

Through the recursion Eq. (8.24), we get the following series expansion:

UI(t, t0) = 1− i

~

∫ t

t0

dt′HI(t
′) +

(
− i

~

)2 ∫ t

t0

dt′HI(t
′)

∫ t′

t0

dt′′HI(t
′′) + · · · (8.25)

By defining the time-ordered product of two operators A(t′) and B(t′′) as

T[A(t′)B(t′′)] = θ(t′ − t′′)A(t′)B(t′′) + θ(t′′ − t′)B(t′′)A(t′), (8.26)
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where the θ-function is the unit step function defined by

θ(t1 − t2) =

{
0, t1 < t2;

1, t1 > t2,
(8.27)

we can write the integral in the second term of Eq. (8.25)∫ t

t0

dt′
∫ t′

t0

dt′′HI(t
′)HI(t

′′) =
1

2

∫ t

t0

dt′
∫ t

t0

dt′′T[HI(t
′)HI(t

′′)]. (8.28)

Hence, the expansion can be written as

UI(t, t0) = 1 +

∞∑
n=1

(
− i

~

)n
1

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnT[HI(t1)HI(t2) · · ·HI(tn)]. (8.29)

One can also write the expansion more compactly as

UI(t, t0) = T
[
exp

(
− i

~

∫ t

t0

dt′HI(t
′)

)]
, (8.30)

where the operation of time ordering on an exponential is defined by its operation on the individual terms in the
corresponding Taylor series.

In scattering processes, we are interested in how the states in the distant past evolve into other states in the
distant future. We assume the interactions are localized in spacetime, that is, HI → 0 as t → ±∞. Hence, the
states |ψ(t)〉I → |ψ(±∞)〉I at past and future infinities are the eigenstates of the non-interacting Hamiltonian H0.
We define the S-matrix (scattering matrix) as

S = lim
t→+∞,
t0→−∞

U(t0, t) (8.31)

so that
|ψ(+∞)〉I = S |ψ(−∞)〉I . (8.32)

We call |ψ(−∞)〉I =: |i〉 the initial (or incoming) states and |ψ(+∞)〉I =: |f〉 the final (or outgoing) states. The
probability amplitude for this transition is the matrix element

Afi = 〈f |S|i〉 =: Sfi. (8.33)

The conservation of probability demands that the S-matrix must be unitary, i.e. S†S = 1 because

1 = 〈f |f〉 = 〈i|S†S|i〉 =
∑
f

〈i|S†|f〉 〈f |S|i〉

=⇒
∑
f

S∗
ifSfi = 1.

(8.34)

8.3 Wick’s theorem

As we have seen, the S-matrix is expressed as a Taylor expansion of time-ordered products of the interaction
Hamiltonian in the interaction picture:

S =

∞∑
n=0

(−i)n

n!

∫ +∞

−∞
· · ·
∫ +∞

−∞
d4x1 · · · d4xnT[HI(x1) · · ·HI(xn)]. (8.35)

How to calculate such expressions? It turns out that the Wick’s theorem will help significantly simplify the calcula-
tions. To properly state the Wick’s theorem, let us first define the chronological contractions. The chronological
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contraction of two bosonic operators is defined as

︷ ︸︸ ︷
A(x)B(x′) =

{[
A(+)(x), B(−)(x′)

]
, if x0 > x′0;[

B(+)(x′), A(−)(x)
]
, if x0 < x′0.

(8.36)

The chronological contraction between two fermionic operators is defined as

︷ ︸︸ ︷
A(x)B(x′) =

{ {
A(+)(x), B(−)(x′)

}
, if x0 > x′0;

−
{
B(+)(x′), A(−)(x)

}
, if x0 < x′0.

(8.37)

Note that (+) and (−) denote the annihilation and creation operators, respectively. One can show that these two

definitions really come from the Wick’s theorem:
︷ ︸︸ ︷
A(x)B(x′) = T[A(x)B(x′)]− N[A(x)B(x′)].

Moreover, the normal-ordered product of field operators with contractions is defined as

N
[︷ ︸︸ ︷
ABC...M ...DEF

]
= (−1)q

︷︸︸︷
AM N[BC...DEF ], (8.38)

where q is the number of transpositions of fermionic operators which must be performed to go fromABC...M...DEF

to AMBC...DEF . Now we are ready to formulate the Wick’s theorem.

Wick’s Theorem. Time-ordered product of field operators A,B,C, . . . is equal to the sum of normal-ordered
operators with all possible chronological contractions among them, i.e.

T[ABCDEF...] =N[ABCDEF...]+

N
[︷︸︸︷
AB DEF...

]
+ N

[︷ ︸︸ ︷
ABC DEF...

]
+ · · ·+

N
[︷︸︸︷
AB

︷︸︸︷
CD EF...

]
+ N

[︷︸︸︷
AB

︷ ︸︸ ︷
CDE F...

]
+ · · ·

(8.39)

As we can see, in the first line we have just the normal ordering with contractions. In the second line we have all
possible normal orderings with one contraction. And in the third line we have all possible normal orderings with
two contractions, etc.

We will consider an example with two operators to illustrate the above theorem. Each field operator is the
sum of two operators: the positive frequency operator which contains the annihilation operator, and the negative
frequency operator which contains the creation operator. Consider the product of the operators A(x) and B(x′):

A(x)B(x′) =
[
A(+)(x) +A(−)(x)

]
·
[
B(+)(x′) +B(−)(x′)

]
= N

[
A(+)(x)B(+)(x′)

]
+ N

[
A(−)(x)B(+)(x′)

]
+ N

[
A(−)(x)B(−)(x′)

]
+A(+)(x)B(−)(x′).

(8.40)

Remember that normal ordering puts all the creation operators to the left of annihilation operators. Therefore, the
first three terms are automatically normal-ordered. Consider the last term, which can be written as

A(+)(x)B(−)(x′) =N
[
A(+)(x)B(−)(x′)

]
+

{[
A(+)(x), B(−)(x′)

]
, if A and B are bosonic operators;{

A(+)(x), B(−)(x′)
}
, if A and B are fermionic operators.

(8.41)

Putting Eq. (8.41) into (8.40), we obtain

A(x)B(x′) =N[A(x)B(x′)]

+

{[
A(+)(x), B(−)(x′)

]
, if A and B are bosonic operators;{

A(+)(x), B(−)(x′)
}
, if A and B are fermionic operators.

(8.42)
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Then the time-ordered product of these two field operators (assuming x0 > x′0) is just

T[A(x)B(x′)] = N[A(x)B(x′)] +
︷ ︸︸ ︷
A(x)B(x′) . (8.43)

This is indeed the Wick’s theorem for the product of two operators. Again, remember that time ordering (chrono-
logical ordering) places the operators defined at later times to the left of those defined at earlier times.

Coming back to the S-matrix, we know that it contains the sum of integrals with time-ordered products of
interaction Hamiltonians. And we also know that in QFT, the interaction Hamiltonian are normal-ordered products
of field operators. Thus in the S-matrix we typically have the products

T[N[ABC]...N[DEF ]], (8.44)

where the field operators of any T-product have the same time argument. Such T-products are called the mixed
products. In order to apply the Wick’s theorem, we add an arbitrary small positive quantity ε to the time argument
of all creation operators in the mixed T-product so that the normal ordering of the operators can be omitted and the
mixed T-product becomes the ordinary T-product. At the end, we can set ε = 0.
Note also that the contractions of operators which enter the mixed product under the N operator are always zero

after adding positive ε to the time argument of all the creation operators, e.g. T[N[
︷︸︸︷
A,B]] → T[

︷︸︸︷
AB ] =⇒

︷︸︸︷
AB = 0.

To see this, we write

︷ ︸︸ ︷
A(x)B(x) =

︷ ︸︸ ︷[
A(+)(x0,x) +A(−)(x0 + ε,x)

][
B(+)(x0,x) +B(−)(x0 + ε,x)

]
=
︷ ︸︸ ︷
A(−)(x0 + ε,x)B(+)(x0,x)+

︷ ︸︸ ︷
A(+)(x0,x)B(−)(x0 + ε,x),

(8.45)

where contractions of A(+)B(−) and A(−)B(−) always give zero from the Wick’s theorem. Let us use the Wick’s
theorem to calculate the first term:︷ ︸︸ ︷

A(−)(x0 + ε,x)B(+)(x0,x) = T
[
A(−)(x0 + ε,x)B(+)(x0,x)

]
− N

[
A(−)(x0 + ε,x)B(+)(x0,x)

]
= A(−)(x0 + ε,x)B(+)(x0,x)−A(−)(x0 + ε,x)B(+)(x0,x)

= 0.

(8.46)

Similarly, we have ︷ ︸︸ ︷
A(+)(x0,x)B(−)(x0 + ε,x) = 0. (8.47)

Therefore, ︷ ︸︸ ︷
A(x)B(x) = 0. (8.48)

Hence, Wick’s theorem can be applied to the mixed products (to compute the S-matrix), provided that one omits
chronological contractions of the operators which are under the same normal ordering N and have the same space-
time argument. As we see above, this is effectively equivalent to adding the small positive ε to the time argument
of all creation operators.
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9 Feynman Diagrams and Rules

Now we are ready to calculate the S-matrix element

Afi = 〈f |S|i〉 (9.1)

in a perturbation theory (up to a given order n of the coupling constant) for a definite transition from an initial
state |i〉 to a final state |f〉 and an interaction Hamiltonian HI . In general the S-matrix expansion results in many
complicated transitions. However, only certain terms of the S-matrix contribute to a give transition |i〉 → |f〉.
These terms must contain just the right annihilation operators to destroy particles in |i〉 and just the right creation
operators to create the particles in |f〉. They usually also contain additional creation and annihilation operators
which create and subsequently annihilate some particles. These particles are only present in the intermediate states
and are called virtual particles.

According to the Wick’s theorem, the time-ordered product of operators, such as those present in the expansion
of the S-matrix, can be written as a sum of normal-ordered products of the operators where all creation operators
stand to the left of annihilation operators. Such products of operators first annihilate a certain number of particles
and then create some other particles. They do not cause creation and subsequent annihilation of virtual particles.
Furthermore, each of these normal products effects a particular transition |i〉 → |f〉 which can be represented by a
Feynman diagram. Actually there exists a one-to-one correspondence between the diagrams and the terms in the
expansion (8.35), which can be summarized in simple Feynman rules.

Our goal is to calculate a few terms in the S-matrix expansion and try to determine the Feynman rules. We will
take quantum electrodynamics (QED) as an example.

9.1 QED at S(1)

Let us first write down the S-matrix expansion again:

S =
∞∑
n=0

S(n) =
∞∑
n=0

(−i)n

n!

∫ +∞

−∞
· · ·
∫ +∞

−∞
d4x1 · · · d4xnT[HI(x1) · · ·HI(xn)]. (9.2)

The interaction Hamiltonian density for QED is given by (refer to Eq. (8.13))

HI = e N
[
ψ(x)γµψ(x)Aµ(x)

]
. (9.3)

We can express all three field operators in terms of positive and negative frequency modes:

ψ = ψ+ + ψ−

ψ = ψ+ + ψ−

Aµ = Aµ+ +Aµ−,

(9.4)

where

ψ+ : annihilation operator for e−

ψ− : creation operator for e+

ψ+ : annihilation operator for e+

ψ− : creation operator for e−

Aµ+ : photon annihilation operator

Aµ− : photon creation operator.

(9.5)
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Then the S(1) term in the expansion Eq. (9.2) is

S(1) = −ie
∫
d4x T

[
N
[
ψ(x)γµψ(x)A

µ(x)
]]

= −ie
∫
d4x N

[
ψ(x)γµψ(x)A

µ(x)
]

(the chronological contraction within the same N is omitted)

= −ie
∫
d4x

{
N
[
ψ+(x)γµψ+(x)A

µ
+(x)

]
+ N

[
ψ+(x)γµψ+(x)A

µ
−(x)

]
+ N

[
ψ+(x)γµψ−(x)A

µ
+(x)

]
+ N

[
ψ+(x)γµψ−(x)A

µ
−(x)

]
+ N

[
ψ−(x)γµψ+(x)A

µ
+(x)

]
+ N

[
ψ−(x)γµψ+(x)A

µ
−(x)

]
+ N

[
ψ−(x)γµψ−(x)A

µ
+(x)

]
+ N

[
ψ−(x)γµψ−(x)A

µ
−(x)

]}
.

(9.6)

Each normal-ordered product of fields corresponds to one Feynman diagram (not in order):

γ

e− e−

Aµ
+(x)

ψ+(x)

ψ−(x)
γ

e− e−

ψ+(x)

Aµ
−(x)

ψ−(x)

Figure 1: e− scattering.

γ

e+ e+

Aµ
+(x)

ψ+(x)

ψ−(x)
γ

e+ e+

ψ+(x)

Aµ
−(x)

ψ−(x)

Figure 2: e+ scattering.

γ

e−

e+

ψ+(x)

Aµ
+(x)

ψ+(x)

γ

e−

e+

Aµ
−(x)

ψ+(x)

ψ+(x)

Figure 3: e+e− annihilation.

γ

e−

e+

Aµ
+(x)

ψ−(x)

ψ−(x)

γ

e−

e+

ψ−(x)

Aµ
−(x)

ψ−(x)

Figure 4: e+e− creation.
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However, note that none of the above processes contribute to the scattering of real physical particles for which
we must have kµkµ = 0 for the massless photons and pµpµ = m2 for the electrons and positrons with mass m.
For example, let us consider the the electron-positron annihilation the the creation of a photon (Figure 3b). We can
go from the position space to the momentum space by Fourier transform. In the initial state, there is an electron
with momentum pµ and polarization s and a positron with momentum p′µ and polarization s′:

|i〉 = |p′
e+ , s

′;pe− , s〉 = d†s′(p
′)c†s(p) |0〉 . (9.7)

In the final state we have a photon with momentum kµ and polarization λ:

|f〉 = |k, λ〉 = a†λ(k) |0〉 . (9.8)

Then the transition amplitude is

〈f |S(1)|i〉 = −ie 〈f |
∫
d4x N

[
ψ+(x)γµψ+(x)A

µ
−(x)

]
|i〉

= −ie 〈0|aλ(k)
∫
d4x (x)Aµ−(x)ψ+(x)γµψ+(x)d

†
s′(p

′)c†s(p)|0〉

= −ie
∫
d4x

∫ ∫ ∫
d3k̃

(2π)3/2
√
2ωk̃

d3p̃′

(2π)3/2
√
2ωp̃′

d3p̃

(2π)3/2
√
2ωp̃

ei(ωk̃
x0−k̃·x)e−i(ωp̃′x0−p̃′·x)e−i(ωp̃x

0−p̃·x)
∑
λ̃

∑
s̃′

∑
s̃

εµ
λ̃
(k̃) vs̃′(−p̃′)us̃(p̃)

〈0|aλ(k)a†
λ̃
(k̃)ds̃′(p̃

′)cs̃(p̃)d
†
s′(p

′)c†s(p)|0〉(
aλ(k)a

†
λ̃
(k̃) = a†

λ̃
(k̃)aλ(k) + δλλ̃δ

3(k− k̃),

ds̃′(p̃
′)d†s′(p

′) = −d†s′(p
′)ds̃′(p̃

′) + δs′s̃′δ
3(p′ − p̃′),

cs̃(p̃)c
†
s(p) = −c†s(p)cs̃(p̃) + δss̃δ

3(p− p̃).

)
= −ie

∫
d4x

(2π)9/2
√
8ωkωpωk′

e−i(ωp+ωp′−ωk)x
0

ei(p+p′−k)·xεµλ(k)vs′(−p′)γµus(p)

= (2π)4δ(ωp + ωp′ − ωk)δ
3(p+ p′ − k)M,

(9.9)

where

M =
vs′(−p′)

(2π)3/2
√
2ωp̃′

(−ieγµ)
us(p)

(2π)3/2
√

2ωp̃

εµλ(k = p+ p′)

(2π)3/2
√

2ωk̃

(9.10)

is called the Feynman amplitude.
A few comments are here. The δ-functions in the last line of Eq. (9.9) appear as a result of d4x integration and
reflect the conservation of energy and 3-momentum in the given process, e− + e+ → γ:

ωp + ωp′ = ωk

p+ p′ = k.
(9.11)

However, it can be checked (with simple algebra) that this particular energy-momentum conservation is incompat-
ible with the condition for real particles: pµpµ = p′µp

′µ = m2 and kµkµ = 0 in our case. Thus, this process is
simply unphysical. The same argument applies to all other processes at S(1).
More generally, we have

〈f |S(n)|i〉 = 0 (9.12)

for any unphysical process, i.e. a transition between real physical states which violates the conservation laws of
the theory.
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9.2 QED at S(2)

To obtain real processes, we must consider at least the second-order term S(2) in the S-matrix expansion:

S(2) = −e
2

2

∫
d4x1

∫
d4x2T

[
N[ψ(x1)γµψ(x1)A

µ(x1)] · N[ψ(x2)γνψ(x2)A
ν(x2)]

]
. (9.13)

For the mixed product in S(2), according to the Wick’s theorem (again, omitting the chronological contractions
within the same normal ordering N), we have

T
[
N[ψ(x1)γµψ(x1)A

µ(x1)]N[ψ(x2)γνψ(x2)A
ν(x2)]

]
=N
[
ψ(x1)γµψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)

]
+

N
[︷ ︸︸ ︷
ψ(x1)γµψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)

]
+

N
[
ψ(x1)γµ

︷ ︸︸ ︷
ψ(x1)A

µ(x1)ψ(x2) γνψ(x2)A
ν(x2)

]
+

N
[
ψ(x1)γµψ(x1)

︷ ︸︸ ︷
Aµ(x1)ψ(x2)γνψ(x2)A

ν(x2)

]
+

N
[︷ ︸︸ ︷
ψ(x1)γµψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)︸ ︷︷ ︸

]
+

N
[
ψ(x1)γµ

︷ ︸︸ ︷
ψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)︸ ︷︷ ︸

]
+

N
[︷ ︸︸ ︷
ψ(x1)γµ ψ(x1)A

µ(x1)ψ(x2)︸ ︷︷ ︸ γνψ(x2)Aν(x2)
]
+

N
[︷ ︸︸ ︷
ψ(x1)γµ

︷ ︸︸ ︷
ψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)︸ ︷︷ ︸

]
.

(9.14)

This first term again, does not lead to any real transition. The second and the third terms are identically equal to
each other, which can be seen by permuting the field operators:

N
[︷ ︸︸ ︷
ψ(x1)γµψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)

]
= N

[
ψ(x2)γµ

︷ ︸︸ ︷
ψ(x2)A

µ(x2)ψ(x1) γνψ(x1)A
ν(x1)

]
. (9.15)

Hence, we can combine them and write

S
(2)
I = −e2

∫
d4x1

∫
d4x2 N

[
ψ(x1)γµ

︷ ︸︸ ︷
ψ(x1)A

µ(x1)ψ(x2) γνψ(x2)A
ν(x2)

]
, (9.16)

which contains one fermion contraction. This chronological contraction is a c-number (classical number) and it
is given by the fermion propagator which we will define later. It actually corresponds to a virtual fermion. In
addition we have two uncontracted fermion operators and two uncontracted photon operators, corresponding to
external particles in the initial and final states.
One of the processes described by S(2)

I is known as the Compton scattering:

γ + e− → γ + e−. (9.17)

This process corresponds to selecting the positive frequency part ψ+(x2) of ψ(x2) to annihilate the initial electron
and the negative frequency part ψ−(x1) of ψ(x1) to create the final electron. But for the photons, we have two
choices: we can take either Aµ+(x1) or Aµ+(x2) to annihilate the initial photon and correspondingly, Aµ−(x2) or
Aµ−(x1) to create the final photon. Thus the Compton scattering S-matrix can be written as

S(2)
(
γe− → γe−

)
= Sa + Sb, (9.18)
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where

Sa = −e2
∫ ∫

d4x1d
4x2 ψ−(x1)γµ[iSF (x1 − x2)]γνA

µ
−(x1)A

ν
+(x2)ψ+(x2)

Sb = −e2
∫ ∫

d4x1d
4x2 ψ−(x1)γµ[iSF (x1 − x2)]γνA

ν
−(x2)A

µ
+(x1)ψ+(x2).

(9.19)

Note that

iSF (x1 − x2) =
︷ ︸︸ ︷
ψ(x1)ψ(x2) (9.20)

is the fermion propagator. The Feynman diagrams corresponding to Sa and Sb are shown below:

γ

e−

e−

γ

Aν
+(x2)

x2 → x1

ψ−(x1)

Aµ
−(x1)ψ+(x2)

(a) Sa.

γ

e−

γ

e−

Aν
−(x2)

x2 → x1

ψ−(x1)

Aµ
+(x1)

ψ+(x2)

(b) Sb.

Figure 5: The Feynman diagrams for Compton scattering.

Now we write the initial and final states as

|i〉 = |p, s;k, λ〉 = c†s(p)a
†
λ(k) |0〉

|f〉 = |p′, s′;k′, λ′〉 = c†s′(p
′)a†λ′(k

′) |0〉 .
(9.21)

Hence the matrix element of Sa is

〈f |Sa|i〉 = −e2
∫
d4x1d

4x2

∫
d3p̃ d3k̃ d3p̃′ d3k̃′

(2π)6
√
16ωp̃ωk̃ωp̃′ωk̃′

ei(ωp̃′x0
1−p̃′·x1)ei(ωk̃′x

0
1−k̃′·x1)e−i(ωk̃

x0
2−k̃·x2)e−i(ωp̃x

0
2−p̃·x2)

∑
s̃′

∑
λ̃′

∑
s̃

∑
λ̃

us̃′(p̃
′) γµ

[
1

(2π4)

∫
d4q iSF (q)e

−i[q0(x0
1−x

0
2)−q·(x1−x2)]

]
γν ε

µ

λ̃′(k̃
′) εν

λ̃
(k̃) us̃(p̃)

〈0|aλ′(k′)cs′(p
′)c†s̃′(p̃

′)a†
λ̃′(k̃

′)aλ̃(k̃)cs̃(p̃)c
†
s(p)a

†
λ(k)|0〉︸ ︷︷ ︸

∝ δ3(k′ − k̃′)δ3(p− p̃′)δ3(p− p̃)δ3(k− k̃)

= −e2
∫

d4x1 d
4x2

(2π)6
√
16ωp̃ωk̃ωp̃′ωk̃′

∫
d4q

(2π)4
ei

[
(ωp′+ωk′−q0)x0

1−(p′+k′−q)·x1

]
e−i

[
(ωp+ωk−q0)x0

2−(p+k−q)·x2

]

us′(p
′) γµ [iSF (q)] ε

µ
λ′(k

′) ενλ(k) γν us(p)

=
1

(2π)6
√
16ωp̃ωk̃ωp̃′ωk̃′

∫
d4q (2π)4δ(ωp′ + ωk′ − q0) δ

3(p′ + k′ − q) δ(−ωp − ωk + q0) δ
3(−p− k+ q)

us′(p
′) (−ieγµ) εµλ′(k

′) [iSF (q)] ε
ν
λ(k) (−ieγν) us(p)

= (2π)4δ[(ωp′ + ωk′)− (ωp + ωk)] δ
3[(p′ + k′)− (p+ k)] · Ma,

(9.22)

where

Ma =
us′(p

′)

(2π)3/2
√
2ωp′

(−ieγµ)
εµλ′(k′)

(2π)3/2
√
2ωk′

[iSF (qµ = pµ + kµ)]
ενλ(k)

(2π)3/2
√
2ωk

(−ieγν)
us(p)

(2π)3/2
√

2ωp

(9.23)

is the Feynman amplitude for Sa process. Similarly, for Sb, the Feynman amplitude is

Mb =
us′(p

′)

(2π)3/2
√
2ωp′

(−ieγν)
ενλ(k)

(2π)3/2
√
2ωk′

[
iSF (qµ = pµ − k′µ)

] εµλ′(k′)

(2π)3/2
√
2ωk′

(−ieγµ)
us(p)

(2π)3/2
√

2ωp

. (9.24)
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Some other real processes described by S(2)
I include the Compton scattering by positrons:

γ + e+ → γ + e+, (9.25)

the two-photon pair annihilation:
e+ + e− → γ + γ, (9.26)

and the pair creation:
γ + γ → e+ + e−. (9.27)

Now let us consider the fourth term in Eq.9.14, i.e. a single contraction of two photon fields. The S-matrix is

S
(2)
II = −e

2

2

∫
d4x1

∫
d4x2 N

[
ψ(x1)γµψ(x1)

︷ ︸︸ ︷
Aµ(x1)ψ(x2)γνψ(x2)A

ν(x2)

]
, (9.28)

which describes the following processes: electron-electron scattering (Møller scattering), e− + e− → e− + e−;
positron-positron scattering, e++e+ → e++e+; and electron-positron scattering (Bhabha scattering), e−+e+ →
e− + e+.
For Bhabha scattering, we have the following initial and final states:

|i〉 = |p−, s−;p+, s+〉 = c†s−(p−)d
†
s+(p+) |0〉

|f〉 =
∣∣p′

−, s
′
−;p

′
+, s

′
+

〉
= c†s′−

(p−)d
†
s′+
(p′

+) |0〉 .
(9.29)

There are in total four contributions (four Feynman diagrams) to this process, but two of them are actually equiva-
lent by simply exchanging the positions x1 and x2. The two (topologically) distinct Feynman diagrams are shown
below.

e−(p−, s−)

e+(p+, s+)

e−(p′
−, s

′
−)

e+(p′
+, s

′
+)

γ : x2 → x1

(a) Sa.

e−(p−, s−)

e+(p+, s+)

e−(p′
−, s

′
−)

e+(p′
+, s

′
+)

γ : x2 → x1

(b) Sb.

Figure 6: The Feynman diagrams for Bhabha scattering:
(a). (p−, s−)− ψ+(x2), (p+, s+)− ψ+(x2), (p

′
−, s

′
−)− ψ−(x1), (p

′
+, s

′
+)− ψ−(x1);

(b). (p−, s−)− ψ+(x2), (p+, s+)− ψ+(x1), (p
′
−, s

′
−)− ψ−(x2), (p

′
+, s

′
+)− ψ−(x1).

Then again we have
S(2)(e−e+ → e−e+) = Sa + Sb, (9.30)

where

Sa = −e2
∫
d4x1d

4x2 N
[
ψ−(x1)γµψ−(x1)ψ+(x2)γ

νψ+(x2)
]
[iDµν

F (x1 − x2)]

= −e2
∫
d4x1d

4x2 ψ−(x1)γµψ−(x1)ψ+(x2)γ
νψ+(x2)[iD

µν
F (x1 − x2)];

Sb = −e2
∫
d4x1d

4x2 N
[
ψ+(x1)γµψ−(x1)ψ−(x2)γ

νψ+(x2)
]
[iDµν

F (x1 − x2)]

= e2
∫
d4x1d

4x2 ψ−(x2)γµψ−(x1)ψ+(x1)γ
νψ+(x2)[iD

µν
F (x1 − x2)].

(9.31)

Then we can calculate the matrix element 〈f |Sa|i〉 and 〈f |Sb|i〉 by following the same steps as Eq. (9.22). The
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two Feynman amplitudes are found to be

Ma =
us′−(p

′
−)

(2π)3/2
√
2ωp′

−

(−ieγµ)
vs′+(−p′

+)

(2π)3/2
√
2ωp′

+

[
iDµν

F (qµ = pµ− + pµ+)
] vs+(−p+)

(2π)3/2
√
2ωp+

(−ieγν)
us−(p−)

(2π)3/2
√
2ωp−

(9.32)

and
Mb = −Ma (p

′
+ ↔ p−, s

′
+ ↔ s−) = −Ma (vs′+(−p′

+) ↔ us−(p−)). (9.33)

Next is the second-order terms with more than one contraction. There are three terms with two contractions
and one term with all field operators contracted. Note that the two terms in Eq. (9.14) with photon-photon and
fermion-fermion contractions are equivalent when substituting into Eq. (9.13). So we can combine them and write

S
(2)
III = −e2

∫
d4x1

∫
d4x2 N

[
ψ(x1)γµ

︷ ︸︸ ︷
ψ(x1)A

µ(x1)ψ(x2)γνψ(x2)A
ν(x2)︸ ︷︷ ︸

]
. (9.34)

This operator contains only two uncontracted fermionic operators, and therefore gives rise to two processes de-
pending on whether it is electron or positron that is present in the initial and final states. For the electron case we
have

S(2)(e− → e−) = −e2
∫
d4x1 d

4x2 ψ−(x1)γµ[iSF (x1 − x2)]γνψ+(x2)[iD
µν
F (x1 − x2)]. (9.35)

This expression corresponds to the Feynman diagram shown in Fig. 7. It represents one of the processes which

ψ+(x2)

iSF (x2 − x1)

iDµν
F (x2 − x1)

ψ−(x1)
e− e−

Figure 7: The electron self-energy diagram in the position space.

converts a bare electron into a physical electron, i.e. one surrounded by the photon cloud. This interaction changes
the energy of the system, that is, the mass of the physical electron as compared with that of the bare electron. This
is known as a electron self-energy term.
Let us calculate the Feynman amplitude for the electron self-energy diagram. In the initial and final states we have
a single electron:

|i〉 = c†s(p) |0〉

|f〉 = c†s′(p
′) |0〉 .

(9.36)
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Then the transition amplitude is

〈f |S(2)(e− → e−)|i〉 = −e2
∫
d4x1 d

4x2

∫
d3p̃′ d3p̃

(2π)3
√
4ωp̃′ωp̃

ei(ωp̃′x0
1−p̃′·x1)︸ ︷︷ ︸

= eip̃
′·x1

e−i(ωp̃x
0
2−p̃·x2)︸ ︷︷ ︸

= e−ip̃·x2

∑
s̃′

∑
s̃

us̃′(p̃
′)γµ

[∫
d4q

(2π)4
iSF (q)e

−iq·(x1−x2)

]
γνus̃(p̃)

[∫
d4k

(2π)4
iDµν

F (q)e−ik·(x1−x2)

]
〈0|cs′(p′)c†s̃′(p̃

′)cs̃(p̃)c
†
s(p))|0〉

= −e2
∫

d4x1 d
4x2

(2π)3
√
ωp′ωp

∫
d4q

(2π)4
d4k

(2π)4
ei(p

′−q−k)·x1ei(−p+q+k)·x2

us′(p
′)γµ[iSF (q)]γνus(p)[iD

µν
F (q)]

=
−e2

(2π)3
√
ωp′ωp

∫
d4k d4q δ4(p′ − q − k)δ4(−p+ q + k)us′(p

′)γµ[iSF (q)]γνus(p)[iD
µν
F (q)]

= (2π)4δ4(p′ − p) · M,

(9.37)

where

M =

∫
d4k

(2π)4
[iDµν

F (k)] us′(p
′) (−ieγµ) [iSF (q = p− k)] (−ieγν) us(p). (9.38)

Therefore, the Feynman diagram in the momentum space is shown in Fig. 8.

p

q = p− k

k

p′ = p
e− e−

Figure 8: The electron self-energy diagram in the momentum space.

Notice that the Feynman amplitude has an integration over all internal photon momenta k, which is typical for a
closed loop diagram. Moreover, this amplitude is divergent! These divergent self-energy effects can be eliminated
by incorporating them into the properties of the physical electron. This process is known as the renormalization.

Finally, let us briefly discuss the term in S(2) with two fermion-fermion contractions. This term is called the
photon self-energy term (because of an external photon present in the initial and final states, respectively) or the
vacuum polarization term and has the following S-matrix:

S
(2)
IV = −e2

∫
d4x1

∫
d4x2 N

[︷ ︸︸ ︷
ψ(x1)γµ ψ(x1)A

µ
−(x1)ψ(x2)︸ ︷︷ ︸ γνψ(x2)Aν+(x2)

]
, (9.39)

which is described by the following Feynman diagram.

Aν
+(x2)

iSF (x1 − x2)

iSF (x2 − x1)

Aµ
−(x1)

γ γ

Figure 9: The photon self-energy diagram in the position space (left to right: x2 → x1).
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The normal product in S(2)
IV can be expressed as

N
[︷ ︸︸ ︷
ψσ(x1)(γµ)

σρ ψρ(x1)A
µ
−(x1)ψβ(x2)︸ ︷︷ ︸(γν)βαψα(x2)Aν+(x2)

]
=(−1)

︷ ︸︸ ︷
ψα(x2)ψσ(x1)(γµ)

σρ
︷ ︸︸ ︷
ψρ(x1)ψβ(x2)(γν)

βαAµ−(x1)A
ν
+(x2)

=(−1)Tr [iSF (x2 − x1)γµiSF (x1 − x2)γν ]A
µ
−(x1)A

ν
+(x2).

(9.40)

Notice that the minus sign and the trace in Eq. (9.40) are characteristics of a fermion loop. The trace basically
corresponds to summing over all spin states of the virtual fermion-antifermion pair in the loop.
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10 Propagators and Summary of Feynman Rules

To complete the derivation of Feynman rules in QED we have to calculate the chronological contractions for
fermions ︷ ︸︸ ︷

ψ(x1)ψ(x2) =: iSF (x1 − x2) (10.1)

and for photons ︷ ︸︸ ︷
Aµ(x1)A

ν(x2) =: iDµν
F (x1 − x2). (10.2)

10.1 Fermion propagators

Recall that the chronological contraction for fermions is given by Eq. (8.37)

︷ ︸︸ ︷
ψ(x1)ψ(x2) =

{ {
ψ+(x1), ψ−(x2)

}
, if x01 > x02;

−
{
ψ+(x2), ψ−(x1)

}
, if x02 < x01.

(10.3)

According to the Wick’s theorem, the above chronological contraction can be written as︷ ︸︸ ︷
ψ(x1)ψ(x2) = T

[
ψ(x1)ψ(x2)

]
− N

[
ψ(x1)ψ(x2)

]
. (10.4)

Hence if we compute the vacuum-to-vacuum transition amplitude for the operators for the operators in Eq. (10.4),
we obtain ︷ ︸︸ ︷

ψ(x1)ψ(x2) =: iSF (x1 − x2)

= 〈0|T
[
ψ(x1)ψ(x2)

]
|0〉 −

����������:0

〈0|N
[
ψ(x1)ψ(x2)

]
|0〉

= 〈0|T
[
ψ(x1)ψ(x2)

]
|0〉 ,

(10.5)

where in first step we have pulled the chronological contraction operator out: 〈0|
︷ ︸︸ ︷
ψ(x1)ψ(x2)|0〉 =

︷ ︸︸ ︷
ψ(x1)ψ(x2) 〈0|0〉 =︷ ︸︸ ︷

ψ(x1)ψ(x2). Thus the propagator iSF (x1 − x2) is nothing but the vacuum-to-vacuum transition amplitude of the
time-ordered product of ψ(x1) and ψ(x2) operators. We can expand the field operators in positive and negative
frequency modes:

iSF (x1 − x2) = 〈0|T
[
ψ(x1)ψ(x2)

]
|0〉

= 〈0|T
[
(((((((
ψ+(x1)ψ+(x2) +(((((((

ψ−(x1)ψ−(x2) + ψ+(x1)ψ−(x2) + ψ−(x1)ψ+(x2)
]
|0〉

=

{
〈0|ψ+(x1)ψ−(x2)|0〉 , if x01 > x02;

−〈0|ψ+(x2)ψ−(x1)|0〉 , if x01 < x02.

(10.6)

The physical interpretation is clear: For x01 > x02, we can think of Eq. (10.6) as representing an electron created at
x2, traveling to x1 and being annihilated there. Similarly, for x02 > x01, we can think of it as a positron created at
x1, propagating to x2 and being annihilated there. Then the propagator can be rewritten as

iSF (x1 − x2) = θ(x01 − x02)iS+(x1 − x2)− θ(x02 − x01)iS−(x1 − x2), (10.7)

where
iS+(x1 − x2) = 〈0|ψ+(x1)ψ−(x2)|0〉 (10.8)

and
iS−(x1 − x2) = 〈0|ψ+(x2)ψ−(x1)|0〉 . (10.9)
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θ(x) is again the unit step function defined in Eq. (8.27).
Now we can calculate S+:

iS+(x1 − x2) =

∫
d3k d3k′

(2π)3
√
4ωkωk′

∑
s

∑
s′

us(k)us′(k
′)e−i(ωkx

0
1−k·x1)ei(ωk′x0

2−k′·x2) 〈0|cs(k)c†s′(k
′)|0〉

=

∫
d3k

(2π)32ωk

∑
s

us(k)us(k)e
−ik·(x1−x2)

=

∫
d3k

(2π)32ωk
(γµkµ +m)e−ikµ(x1−x2)

µ

,

(10.10)

where we have used
∑
s us(k)us(k) = γµkµ +m. Now using the fact that kµ → i∂µ under the inverse Fourier

transform (as in the above equation), we can write

iS+(x) = (iγµ∂µ +m)[i∆+(x)], (10.11)

where

∆+(x) = −i
∫

d3k

(2π)3
e−i(

√
k2+m2x0−k·x)

2
√
k2 +m2

. (10.12)

Again we have used the definition ωk =
√
k2 +m2. Similarly, for S−(x), we use

∑
s vs(k)vs(k) = −γµkµ +m

to obtain
iS−(x) = (iγµ∂µ +m)[i∆−(x)], (10.13)

where

∆−(x) = −i
∫

d3k

(2π)3
ei(

√
k2+m2x0−k·x)

2
√
k2 +m2

. (10.14)

Hence, from Eq. (10.7) the propagator now becomes

iSF (x) = θ(x0)(iγµ∂µ +m)[i∆+(x)]− θ(−x0)(iγµ∂µ +m)[i∆−(x)]. (10.15)

To evaluate the propagator, we need to evaluate the integrals in Eqs. (10.12) and (10.14). By employing the contour
integration method, we find that both integrals are equivalent to a four-dimensional integral given by

∆F (x) =
1

(2π)4

∫
CF

d4k
e−kµx

µ

kµkµ −m2
, (10.16)

where CF corresponds to the exact contour taken for integration over k0 (different for x0 > 0 and x0 < 0). Note
that this integral has two poles at k = ±ωk. To evaluate it, instead of deforming the contour, we can move the
poles an infinitesimal distance away from the real axis, as shown in Fig. 10.

Figure 10: The displacements of poles for ∆F (x).

Then the integral can be written as

∆F (x) =
1

(2π)4

∫
d4k

e−ik·x

k20 − (ωk − iη)2

=
1

(2π)4

∫
d4k

e−ik·x

k2 −m2 + iε
,

(10.17)

where ε = 2ηωk is a small positive number which we let tend to zero after integration.
It turns out that the function i∆F (x) we have obtained is actually the Feynman propagator for the massive scalar
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field: ︷ ︸︸ ︷
φ(x1)φ(x2) = 〈0|T[φ(x1)φ(x2)]|0〉 = i∆F (x1 − x2). (10.18)

For a complex scalar field, the propagator is︷ ︸︸ ︷
φ(x1)φ

∗(x2) = 〈0|T[φ(x1)φ∗(x2)]|0〉 = i∆F (x1 − x2). (10.19)

In the momentum space, it can written as

i∆F (k) =
i

k2 −m2 + iε
. (10.20)

Now back to our fermion propagator, it can therefore be written as (using Eq. (10.15))

iSF (x) = (iγµ∂µ +m)i∆F (x) = i

∫
d4k

(2π)4
γµkµ +m

k2 −m2 + iε
e−ik·x. (10.21)

In the momentum space, it is

iSF (k) = i
γµkµ +m

k2 −m2 + iε

=
i

γµkµ −m+ iε
,

(10.22)

since (γµkµ +m)(γµkµ −m) = k2 −m2.

10.2 Photon propagators

In Lorentz (Feynman) gauge

In a similar way we can calculate the propagator for the photon field︷ ︸︸ ︷
Aµ(x1)A

ν(x2) =: iDµν
F (x1 − x2) = 〈0|T[Aµ(x1)Aν(x2)]|0〉

= θ(x01 − x02)iD
µν
+ (x1 − x2)− θ(x02 − x01)iD

µν
− (x1 − x2),

(10.23)

where
iDµν

+ (x1 − x2) = 〈0|Aµ+(x1)Aν−(x2)|0〉 (10.24)

and
iDµν

− (x1 − x2) = 〈0|Aν+(x2)A
µ
−(x1)|0〉 . (10.25)

Then we calculate Dµν
+ as follows:

iDµν
+ (x1 − x2) =

∫
d3k d3k′

(2π)3
√
4ωkωk′

∑
λ

∑
λ′

εµλ(k)ε
ν
λ′(k′)e−i(ωkx

0
1−k·x1)ei(ωk′x0

2−k′·x2) 〈0|aλ(k)a†λ′(k
′)|0〉

=

∫
d3k

(2π)32ωk

∑
λ

εµλ(k)ε
ν
λ(k)e

ik·(x1−x2)

= −
∫

d3k

(2π)32ωk
ηµνeikµ(x1−x2)

µ

,

(10.26)

where we have used
3∑

λ=0

εµλ(k)ε
ν
λ(k) = −ηµν (10.27)

in the Lorenz gauge. Therefore, we can write

iDµν
+ (x) = −ηµνi∆+(x), (10.28)
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where

∆+(x) =
1

(2π)4

∫
C+

d4k
e−ikµx

µ

kµkµ
. (10.29)

Similarly, for Dµν
− , we have

iDµν
− (x) = −ηµνi∆−(x), (10.30)

where

∆−(x) =
1

(2π)4

∫
C−

d4k
e−ikµx

µ

kµkµ
. (10.31)

So now we can combine Eqs. (10.29) and (10.31) and write

∆P (x) =
1

(2π)4

∫
CP

d4k
e−ikµx

µ

kµkµ
= lim
m→0

∆F (x). (10.32)

Again, by shifting the poles, we can write the integral above as

∆P (x) =
1

(2π)4

∫
d4k

e−ik·x

k2 + iε
. (10.33)

Thus, the photon propagator in the Lorenz (Feynman) gauge can be written as

iDµν
F (x) = −ηµνi∆P (x) =

−iηµν

(2π)4

∫
d4k

e−ik·x

k2 + iε
. (10.34)

In the momentum space, it is written as

iDµν
F (k) =

−iηµν

k2 + iε
. (10.35)

In Coulomb gauge

The derivation of the photon propagator in the Coulomb gauge is exactly the same as that in the Lorenz (Feyn-
man) gauge. The only difference is that in the Coulomb gauge,

D00
F (x1 − x2) = 0, Di0

F (x1 − x2) = D0i
F (x1 − x2) = 0. (10.36)

And the sum of polarization vectors is (notice the difference from that in the Lorenz gauge)

2∑
λ=1

εiλ(k)ε
j
λ(k) = δij − kikj

|k|2
. (10.37)

Therefore, the photon propagator is now written as

iDij
F (x) =

(
δij − ∂i∂j

∇2

)
i∆P (x) = i

(
δij − ∂i∂j

∇2

)∫
d4k

(2π)4
e−ik·x

k2 + iε
. (10.38)

In the momentum space, it is

iDij
F (k) =

(
δij − kikj

|k|2

)
i

k2 + iε
. (10.39)

10.3 Summary of Feynman rules for QED

As we have seen, for a transition |i〉 → |f〉, the S-matrix element (transition amplitude) is generally given by

〈f |S|i〉 = δfi + (2π)4δ4(pf − pi)Mfi, (10.40)
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where the Feynman amplitude Mfi is given by

Mfi =

∞∑
n=1

M(n)
fi . (10.41)

The Feynman amplitude M(n)
fi is obtained by drawing all topologically different Feynman diagrams in the mo-

mentum space which contain n vertices and the correct number of external lines. The contribution M(n)
fi from

each diagram is obtained from the following Feynman rules (for QED):

1. For each vertex, write a factor (−ieγµ).
2. For each internal photon line (photon propagator) labelled by momentum k, write a factor

iDµν
F =

−iηµν

k2 + iε
.

3. For each internal fermion line (fermion propagator) labelled by momentum p, write a factor

iSF (p) = i
γµpµ +m

p2 −m2 + iε
=

i

γµpµ −m+ iε
.

4. For each external line, write one of the following factors:

(a) For each initial electron, write
us(p)

(2π)3/2
√
2ωp

.

(b) For each final electron, write
us(p)

(2π)3/2
√
2ωp

.

(c) For each initial positron, write
vs(−p)

(2π)3/2
√
2ωp

.

(d) For each final positron, write
vs(−p)

(2π)3/2
√
2ωp

.

(e) For each initial/final photon, (both) write

εµλ(k)

(2π)3/2
√
2ωk

.

5. The spinor factors (γ-matrices, SF -functions, four-spinors etc.) for each fermion line are ordered so that,
reading from right to left, they occur in the same sequence as following the fermion line in the direction of
its arrows.

6. For each closed fermion loop, take the trace and multiply it by a factor of (−1).

7. The 4-momenta associated with the three lines meeting at each vertex satisfy energy-momentum conserva-
tion. For each 4-momentum q which is not fixed by the the energy-momentum conservation, carry out the
integral

∫
d4q

(2π)4 . One such integration w.r.t. an internal 4-momentum q occurs for each closed loop.

8. Multiply the expression by a phase factor δp which is equal to +1(−1) if an even (odd) number of inter-
changes of neighboring fermionic operators is required to perform the normal ordering.

10.4 Causality in QFT

There is a problem with causality in single-particle relativistic theory, i.e. in relativistic quantum mechanics.
Consider the propagation of a free particle from a point xi0 to a point xi. This propagation is described by the
transition amplitude P (t) =

〈
xi
∣∣e−iHt∣∣xi0〉. Now if we consider

∣∣xi∣∣� t (i.e. well outside the light cone, acausal
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region), and do the integration (from inserting two complete sets of states
∫

d3k
(2π)3 |p〉 〈p| and

∫
d3k′

(2π)3 |p
′〉 〈p′| into

the transition amplitude), we will find that the probability for the acausal propagation is non-zero! Let us discuss
this in details in QFT.

Consider, for simplicity, the case of real scalar fields. The amplitude for a corresponding particle to propagate
from x1 to x2 is given by (NOT the Feynman propagator)

〈0|φ(x2)φ(x1)|0〉
= 〈0|φ+(x2)φ−(x1)|0〉 =: i∆+(x2 − x1) (φ+ : a(k); φ− : a†(k))

=

∫
d3k

(2π)3
e−i[ωk∆t−k·(x2−x1)]

2ωk
,

(10.42)

where x02 − x01 = δt > 0.
First consider where x2 − x1 is time-like (causal propagation), i.e. (x2 − x1)µ(x2 − x1)

µ > 0. In this case we
can always find the reference frame where x2 − x1 = 0 so that we can turn the three-dimensional integral into a
one-dimensional integral:

i∆+(x2 − x1) = 4π

∫ ∞

0

|k|2d|k|
(2π)3

e−i
√

|k|2+m2∆t

2

√
|k|2 +m2

(

∫
d3k = 4π

∫
|k|2d|k| spherical integration)

=
1

4π2

∫ ∞

0

dωk

√
ω2
k −m2e−iωk∆t (d|k| = ωk dωk√

ω2
k −m2

)

∼ e−im∆t as ∆t→ ∞,

(10.43)

where in the last step, we have used the stationary phase technique to approximate the integral.
Now consider the acausal propagation where ∆t = 0 and x2 − x1 = ∆x. Then the amplitude is

i∆+(x2 − x1) =

∫
d3k

(2π)3
eik·∆x

2ωk

=
1

(2π)3

∫
|k|2 sin θ dθ dφ d|k| e

i|k||∆x| cos θ

2

√
|k|2 +m2

=
1

(2π)2

∫ ∞

0

d|k| |k|2

2

√
|k|2 +m2

ei|k||∆x| − e−i|k||∆x|

i|k||∆x|

=
1

(2i)(2π)|∆x|

∫ ∞

−∞
d|k| |k|ei|k||∆x|

2

√
|k|2 +m2

∼ e−m|∆x| as |∆x| → ∞.

(10.44)

Again, we see that the acausal propagation of a particle is non-zero!
However, in QFT this acausal propagation cannot be measured in any real experiment. Indeed, the question we
should ask is whether a measurement performed a tone point can affect a measurement at another point whose
separation is space-like. Suppose one measures the field φ(x) at two different points x2 and x1. Then if the
commutator [φ(x2), φ(x1)] vanishes, this means that one measurement cannot affect the other. In fact, if the
commutator [φ(x2), φ(x1)] = 0 for space-like separation, (x2 − x1)

2 < 0, then causality is preserved generally.
The proof that [φ(x2), φ(x1)] = 0 for (x2−x1)2 < 0 simply follows from the fact that this commutator is Lorentz
invariant and that [φ(x2), φ(x1)] = 0 when x02 = x01 according to the basic equal-time commutation relations. We
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can show that the commutator is indeed Lorentz invariant:

[φ(x2), φ(x1)] =

∫
d3k d3k′

(2π)3
√
4ωkωk′

[(
a(k)e−i(ωkx

0
2−k·x2) + a†(k)ei(ωkx

0
2−k·x2)

)
+
(
a(k′)e−i(ωk′x0

1−k′·x1) + a†(k′)ei(ωk′x0
1−k′·x1)

)]
=

∫
d3k

(2π)32ωk

[
e−ik·(x2−x1) − eik·(x2−x1)

]
= i∆+(x2 − x1)− i∆−(x2 − x1).

(10.45)

The ∆(x) in the equation above can be represented by a contour integral

∆(x) = − i

(2π)4

∫
C

d4k
e−ik·x

k2 −m2
. (10.46)

Then ∆(x) is obviously Lorentz invariant.
We know that [φ(x2), φ(x1)]x0

2=x
0
1
= 0, and since this commutator is Lorentz invariant, it will vanish for any

space-like interval. This is because we can always perform proper Lorentz transformations from the frame where
x02 = x01 and thus

[φ(x2), φ(x1)]x0
2=x

0
1
= 0 =⇒ [φ(x2), φ(x1)] = 0 for any (x2 − x1)

2 < 0. (10.47)

For the case of causal separation, (x2 − x1)
2 6 0, such a proper Lorentz transformation is impossible and

[φ(x2), φ(x1)] 6= 0. In this way causality is preserved in QFT again.
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11 Cross Section
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