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While general relativity (GR) is a classical theory, we know that the world is fundamentally

quantum mechanical. As the first step to a quantum theory of gravity, we may take the idea

that quantized matter fields propagate on a fixed curved spacetime background, and study

quantum field theory (QFT) in such a background. We shall see that even a naive attempt

like this leads to some surprising results such as the Unruh effect and the Hawking radiation

of black holes.

1 Quantum mechanics

In this section we give a quick reminder of canonical quantization of one of physicists’ favorite systems,

harmonic oscillators. A classical harmonic oscillator in 1D has the following Lagrangian:

L(q, q̇) =
1

2
q̇2 − 1

2
ω2q2, (1)

where ω is a real constant and we have set the mass of the oscillator to unity for convenience. Using the

Euler-Lagrange equation, we get the equation of motion

q̈ + ω2q = 0, (2)

which admits a general solution

q(t) = aeiωt + a∗e−iωt, (3)

where a is a complex constant. We may also define the canonical momentum

p ≡ ∂L(q, q̇)

∂q̇
= q̇, (4)

and perform a Legendre transformation to find the Hamiltonian

H(p, q) = pq̇ − L =
1

2
p2 +

1

2
ω2q2. (5)

The Hamilton’s equations of motion are

q̇ = p, ṗ = −ω2q, (6)

which are indeed equivalent to Eq. (2).

For a classical harmonic oscillator, we may identify the “ground state” as the state without motion,

i.e. q(t) = 0 for all t, which is obviouslly the lowest-energy state of the system. On the other hand,

the quantum theory of a harmonic oscillator is obtained by the standard procedure known as canonical

quantization. Upon canonical quantization, we promote the classical coordinate q(t) and momentum p(t) to

Hermitian operators (i.e. “hatted” objects) satisfying the same equations of motion (6), and demand that

they satisfying the Heisenberg commutation relation1

[q̂(t), p̂(t)] = i~. (7)

In what follows, we will always set ~ = 1. We note that the “classical ground state” q̂(t) = 0 is impossible

1This postulate is required to realize the Heisenberg uncertainty principle.
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for a quantum harmonic oscillator because the commutation relation cannot be satisfied by any p̂(t). Hence,

a quantum oscillator cannot be completely at rest, and we shall find out what its lowest-energy state is.

One way to obtain the energy levels of the harmonic oscillator is to go to the so-called Schrödinger picture,

where the operators are time-independent and the state vectors or wavefunctions evolve in time. Since the

Hamiltonian is time-independent in this picture, we can solve the Schrödinger equation

i
∂

∂t
ψ = Ĥψ (8)

by separation of variables, i.e. separating the wavefunctions into functions of the spatial coordinate and

functions of time, ψ(q, t) = f(t)g(q). The solutions are found to be (up to normalization)

ψn(q, t) = e−
1
2
ωq2

Hn

(√
ωq
)
e−iEnt, (9)

where Hn is the Hermite polynomial of degree n, and

En =

(
n+

1

2

)
ω. (10)

The states ψn(q, t) are eigenstates of the Hamiltonian, with energy eigenvalues En. Thus, we see that the

energy of a quantum harmonic oscillator is quantized, and the ground state (n = 0) has energy ω/2.

Another way of describing the quantum oscillators is to stay in the Heisenberg picture, where the op-

erators are time-dependent and the quantum states are time-independent, and introduce the raising and

lowering operators. This approach turns out to be more convenient for developing QFTs. We first define

the raising operator â+(t) and the lowering operator â−(t) to be

â±(t) =

√
ω

2

[
q̂(t)∓ i

ω
p̂(t)

]
. (11)

It is easy to see that these two operators are Hermitian conjugate of each other, [â−(t)]
†

= â+(t). The

equations of motion of them can be derived from the Hamilton’s equations (6):

d

dt
â±(t) = ±iωâ±(t). (12)

With the initial conditions, â±(t)
∣∣
t=0

= â±, where â± are time-independent operators which we will call

creation and annihilation operators, respectively, the solutions are found to be

â±(t) = â±e±iωt. (13)

We can readily rewrite the position and momentum operators in terms of the creation and annihilation

operators as

q̂(t) =
1√
2ω

(
â−e−iωt + â+eiωt

)
, p̂(t) = −i

√
ω

2

(
â−e−iωt − â+eiωt

)
. (14)

Through the commutation relation (7), we find that the creation and annihilation operators satisfy the

following commutation relation: [
â−, â+

]
= 1. (15)

The Hamiltonian can be expressed as

Ĥ =
1

2
p̂(t)2 +

1

2
ω2q̂(t)2 =

(
â+â− +

1

2

)
ω. (16)

Assuming that the ground state exists and is unique, and the eigenvalues of Ĥ are bounded from below, the

ground state |0〉 is found to satisfy

â− |0〉 = 0, (17)
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i.e. the ground state is the one that can be annihilated away by the annihilation operator. Then we have

Ĥ |0〉 = 1
2ω |0〉, that is, the ground state has the lowest energy ω/2, which agrees with the Eq. (10). The

excited states |n〉, where n = 1, 2, . . . , can be constructed by successive operation by the creation operators,

|n〉 =
1√
n!

(
â+
)n |0〉 , (18)

where the factors of 1/
√
n! are required by the orthonormality condition, 〈m|n〉 = δmn. It is straightforward

to check that each state |n〉 is an eigenstate of the Hamiltonian,

Ĥ |n〉 =

(
n+

1

2

)
ω︸ ︷︷ ︸

En

|n〉 . (19)

2 QFT in flat spacetime

QFT is just a particular example of a quantum mechanical system, in which we quantize a field that permeate

spacetime rather than a single oscillator. Here we consider the simplest example, a real scalar field φ(x, t)

in 4d Minkowski spacetime. The action of such a scalar field is

S[φ] =

∫
d4x L =

∫
d4x

[
−1

2
ηµν∂µφ∂νφ−

1

2
m2φ2

]
, (20)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric for a flat spacetime. By extremizing the action, the

equation of motion is found to be

∂µ∂
µφ−m2φ =

(
−∂2t +∇2 −m2

)
φ = 0, (21)

which is known as the Klein-Gordon equation. To solve this equation, we first perform a spatial Fourier

decomposition on the scalar field,

φ(x, t) =

∫
d3k

(2π)3/2
eik·xφk(t), (22)

where the complex-valued functions φk(t) are the Fourier modes that satisfy the relation (φk)∗ = φ−k
because the field φ(x, t) is real. Substituting Eq. (22) into the Klein-Gordon equation, we find

φ̈k +
(
|k|2 +m2

)
︸ ︷︷ ︸

≡ω2
k

φk = 0. (23)

In other words, each mode φk(t) satisfies the equation of motion for a harmonic oscillator with frequency

ωk. And we know that the general solution is in the form of Eq. (3).

To quantize the scalar field, we similarly introduce the canonical momentum conjugate to the field φ,

π(x, t) =
∂L
∂φ̇

= φ̇(x, t), (24)

and promote both φ(x, t) and π(x, t) to operators that satisfy the equal-time commutation relation:

[φ̂(x, t), π̂(y, t)] = iδ3(x− y); [φ̂(x, t), φ̂(y, t)] = [π̂(x, t), π̂(y, t)] = 0. (25)

Then the commutation relation for the mode functions (which are now operators) φ̂k(t) and π̂k(t) can be

readily obtained:

[φ̂k(t), π̂k′(t)] = iδ3(k + k′). (26)

Note that the plus sign in the delta function indicates that the variable that is conjugate to φ̂k is not π̂k
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but π̂−k = π̂†k. For each mode φ̂k(t), we proceed with quantization of a harmonic oscillator as in quantum

mechanics. We introduce the time-dependent creation and annihilation operators:

â+k (t) =

√
ωk
2

[
φ̂−k(t)− iπ̂−k(t)

ωk

]
, â−k (t) =

√
ωk
2

[
φ̂k(t) +

iπ̂k(t)

ωk

]
. (27)

The equations of motion for these operators are derived from Eq. (23):

d

dt
â±k (t) = ±iωkâ±k (t), (28)

whose solutions are

â±k (t) = â±k e±iωkt, (29)

where the time-independent creation and annihilation operators â±k satisfy the commutation relations

[â−k , â
+
k′ ] = δ3(k− k′); [â−k , â

−
k′ ] = [â+k , â

+
k′ ] = 0. (30)

The Hilbert space of the field states is built in a similar fashion as the quantum harmonic oscillator,

although now we need to keep track of separate numbers of excitations for each momentum k. We postulate

the existence of the unique vacuum state |0〉 such that â−k |0〉 = 0,∀k. Then a state with nk particles

(excitations) with the same momentum k is created by repeated action by the creation operator on the

vacuum state,

|nk〉 =
1√
nk!

(
â+k
)nk |0〉 , (31)

while a state with ni excitations of various momenta ki is

|n1, n2, · · · , nj , · · ·〉 =
1√

n1!n2! · · ·nj ! · · ·

(
â+k1

)n1
(
â+k2

)n2

· · ·
(
â+kj

)nj
· · · |0〉 . (32)

The Hilbert space of the field states is spanned by basis vectors |n1, n2, · · ·〉 with all possible choices of ni.

Such a space is called the Fock space.

Using Eqs. (27) and (29), the Fourier modes φ̂k(t) can be expressed in terms of the time-independent

creation and annihilation operators,

φ̂k(t) =
1√
2ωk

(
â−k e−iωkt + â+k eiωkt

)
. (33)

Thus, the complete mode expansion of the scalar field is

φ̂(x, t) =

∫
d3k

(2π)3/2
1√
2ωk

[
â−k e−iωkt+ik·x + â+−keiωkt+ik·x

]
=

∫
d3k

(2π)3/2
1√
2ωk

[
â−k e−iωkt+ik·x + â+k eiωkt−ik·x

]
=

∫
d3k

[
â−k fk(x, t) + â+k f

∗
k(x, t)

]
,

(34)

where the mode functions

fk(xµ) =
eikµx

µ

[(2π)3(2ω)]1/2
(35)

and their complex conjugates f∗k indeed form a complete orthonormal2 set of solutions to the Klein-Gordon

2With respect to the inner product defined as an integral over a constant-time hypersurface Σt:

(φ1, φ2) = −i
∫

Σt

d3x (φ1∂tφ
∗
2 − φ∗2∂tφ1).

One can show that (fk1 , fk2) = δ3(k1 − k2) and (f∗k1
, f∗k2

) = −δ3(k1 − k2).

4



equation. The fk modes are called the positive-frequency modes, satisfying the Schrödinger equation

i∂tfk = ωkfk, ωk > 0, (36)

while the f∗k modes are called the negative-frequency modes satisfying

i∂tf
∗
k = −ωkf∗k, ωk > 0. (37)

One crucial aspect of these modes in flat spacetime is our ability to distinguish between positive and

negative frequencies, allowing for an interpretation of their an interpretation of their coefficients in the mode

expansion of the scalar field as creation and annihilation operators. We consider another inertial observer

in a Lorentz-boosted frame:

t′ = γt− γv · x, x′ = γx− γvt, (38)

where γ = 1/
√

1− |v|2. The inverse transformation is given by

t = γt′ + γv · x′, x = γx′ + γvt′. (39)

Then the time derivative of the mode functions in the boosted frame is

∂t′fk =
∂xµ

∂t′
∂µfk

= γ(−iωk)fk + γv · (ik)fk

= −iω′kfk,

(40)

or

i∂t′fk = ω′kfk, (41)

where ω′k = γωk − γv · k is simply the frequency in the boosted frame. Similarly, one finds i∂t′f
∗
k = −ω′kf∗k.

Therefore, even though the frequency of a mode depends on the choice of inertial frame, the decomposition

into positive and negative frequencies is invariant. Thus, any two inertial observers related by a Lorentz

transformation in flat spacetime will agree on a unique set of creation and annihilation operators, which

then uniquely determine the vacuum state.

3 QFT in curved spacetime

It is straightforward to generalize theories from flat to curved spacetime. We consider a minimally coupled

(zero coupling to the curvature scalar R) real scalar field in a curved spacetime, whose action is now given

by

S[φ] =

∫
d4x
√
−g
[
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2

]
. (42)

The equation of motion is derived to be

gµν∇µ∇νφ−m2φ = 0, (43)

which is a generalization of the Klein-Gordon equation in curved spacetime. To proceed, let us consider a

specific example, a scalar field in the cosmological background, that is, we take the metric gµν to be the

flat3 FRW metric:

ds2 = −dt2 + a2(t)dx2, (44)

3It is only the three-dimensional spatial sections that are flat; the four-dimensional geometry of such spacetime is still
curved.
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where a(t) is the scale factor. We may define the conformal time

η(t) ≡
∫ t

t0

dt

a(t)
, (45)

where t0 is an arbitrary constant. Then in the coordinates (η,x), the FRW metric can be rewritten as

ds2 = a2(η)
(
−dη2 + dx2

)
, (46)

so the metric is conformally flat. Furthermore, it is convenient to introduce the auxiliary field χ ≡ a(η)φ.

Then after some algebra the action (42) can be written as

S[χ] =
1

2

∫
dη d3x

[(
χ′
)2 − (∇χ)2 − m̃2(η)χ2

]
, (47)

where χ′ = ∂χ/∂η , and we have denoted the time-dependent effective mass by m̃:

m̃2(η) ≡ m2a2 − a′′

a
. (48)

Thus, the dynamics of a scalar field φ in a flat FRW spacetime is mathematically equivalent to the dynamics

of the auxiliary field χ in the Minkowski spacetime. All the information about the influence of gravity on

the field φ is encapsulated in the time-dependent effective mass m̃(η). It follows from the action that the

equation of motion for the field χ(η,x) is

χ′′ −∇2χ+ m̃2(η)χ = 0. (49)

Expanding χ in Fourier modes,

χ(η,x) =

∫
d3k

(2π)3/2
χk(η)eik·x, (50)

we find the equations of motion for the modes χk(η) to be

χ′′k +
[
m̃2(η) + |k|2

]
︸ ︷︷ ︸

≡ω2
k(η)

χk = 0. (51)

This corresponds to the equation of motion for a time-dependent harmonic oscillator. Recall from Quantum

Mechanics I that the solution can be in general written in terms of different mode functions4. We begin by

choosing the mode function vk(η), which is a complex-valued solution of

v′′k + ω2
k(η)vk = 0, with ω2

k(η) ≡ m̃2(η) + |k|2. (52)

Then the general solution to Eq. (51) can be written as a linear combination of vk and v∗k as

χk(η) =
1√
2

[
a−k v

∗
k(η) + a+−kvk(η)

]
, (53)

4Eq. (51) has a two-dimensional space of solutions. Any two linearly independent solutions x1(η) and x2(η) form a basis
in this space. It is easy to see that the Wronskian, W [x1, x2] ≡ x′1x2 − x1x

′
2, is time-independent if x1,2(η) are solutions of Eq.

(51) and moreover, W [x1, x2] 6= 0 iff x1(η) and x2(η) are linearly independent solutions. If {x1(η), x2(η)} is a basis of solutions,
it is convenient to define the complex function v(η) ≡ x1(η) + ix2(η) such that v(η) and v∗(η) are linearly independent and
form a basis in the space of complex solutions. To quantize the time-dependent harmonic oscillator, if we choose to write

q̂(η) =
1√
2

[
â+v(η) + â−v∗(η)

]
, p̂(η) = q̂′(η) =

1√
2

[
â+v′(η) + â−v∗

′
(η)
]
,

and impose the normalization condition on the mode functions: Im(v′v∗) = 1
2i
W [v, v∗] = 1, then the canonical commutation

relation [q̂(η), p̂(η)] = i will yield the standard commutation relation for â±: [â−, â+] = 1.
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where a±k are complex coefficients. Note that the index −k in the second coefficient and the factor 1/
√

2

are chosen for later convenience. Then the mode expansion of the field χ(η,x) with respect to the mode

functions vk(η) can be readily written as

χ(η,x) =

∫
d3k

(2π)3/2
1√
2

[
a−k v

∗
k(η) + a+−kvk(η)

]
eik·x

=

∫
d3k

(2π)3/2
1√
2

[
a−k v

∗
k(η)eik·x + a+k vk(η)e−ik·x

]
.

(54)

To quantize the field, we again promote the coefficients to time-independent operators â±k and postulate the

canonical commutation relation

[χ̂(η,x), χ̂′(η,y)] = iδ3(x− y). (55)

By imposing the normalization condition on the mode functions

Im(v′kv
∗
k) =

v′kv
∗
k − vkv∗k

′

2i
=
W [vk, v

∗
k]

2i
= 1, (56)

we obtain the usual commutation relations for the creation and annihilation operators,

[â−k , â
+
k′ ] = δ3(k− k′); [â−k , â

−
k′ ] = [â+k , â

+
k′ ] = 0. (57)

Therefore, once the operators â±k are determined, the vacuum state |0〉 is defined as the eigenstate of all

annihilation operators with eigenvalue 0, i.e. â−k |0〉 = 0, ∀k. All the excited states can be constructed in

the same way as Eq. (32).

However, as mentioned above, the basis of the solutions to the time-dependent harmonic oscillators is

not unique. We may choose another set of linearly independent solutions, uk(η) and u∗k(η), as our mode

functions. The “old” mode function vk(η) can be in general written as a linear combination of the “new”

mode functions uk(η) and u∗k(η) (or vice versa),

vk(η) = αkuk(η) + βku
∗
k(η), (58)

with complex coefficients αk and βk. If both sets vk(η) and uk(η) are normalized according to Eq. (56),

then the coefficients satisfy

|αk|2 − |βk|2 = 1. (59)

In canonical quantization, using the mode functions uk(η), one obtains an alternative mode expansion which

defines another set of creation and annihilation operators, b̂±k :

χ̂(η,x) =

∫
d3k

(2π)3/2
1√
2

[
b̂−k u

∗
k(η)eik·x + b̂+k uk(η)e−ik·x

]
. (60)

Since both Eqs. (54) and (60) describe the mode expansion of the same field χ̂(η,x), they must agree, i.e.

χ̂(η,x) =

∫
d3k

(2π)3/2
1√
2

[
â−k v

∗
k(η)eik·x + â+k vk(η)e−ik·x

]
=

∫
d3k

(2π)3/2
1√
2

{
â−k [α∗ku

∗
k(η) + β∗kuk(η)]eik·x + â+k [αkuk(η) + βku

∗
k(η)]e−ik·x

}
=

∫
d3k

(2π)3/2
1√
2

[(
α∗kâ

−
k + βkâ

+
−k
)
u∗k(η)eik·x +

(
αkâ

+
k + β∗k â

−
−k
)
uk(η)e−ik·x

]
!

=

∫
d3k

(2π)3/2
1√
2

[
b̂−k u

∗
k(η)eik·x + b̂+k uk(η)e−ik·x

]
.

(61)
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This immediately implies the following relations between the operators b̂±k and â±k :

b̂−k = α∗kâ
−
k + βkâ

+
−k, b̂+k = αkâ

+
k + β∗k â

−
−k. (62)

Such relations are called the Bogolyubov transformation and the complex coefficients αk, βk are called

the Bogolyubov coefficients. Furthermore, the two sets of annihilation operators â−k and b̂−k define their

corresponding vacua, which we will call the a-vacuum and b-vacuum, respectively. Let us calculate the

mean number of b-particles of the mode χk in the a-vacuum state, which is given by the expectation value

of the b-particle number operator N̂
(b)
k ≡ b̂+k b̂

−
k in the state |0a〉:

〈0a|b̂+k b̂
−
k |0a〉 = 〈0a|(αkâ+k + β∗k â

−
−k)(α∗kâ

−
k + βkâ

+
−k)|0a〉

= 〈0a|β∗kβkâ−−kâ
+
−k|0a〉

= |βk|2 〈0a|δ3(0) + â+−kâ
−
−k|0a〉

= |βk|2δ3(0).

(63)

The divergent factor δ3(0) is a consequence of considering an infinite spatial volume. If we quantize the field

in a box of finite volume, the divergent factor will be replaced by the box volume. Therefore, we obtain the

mean density of b-particles in the a-vacuum:

nk = |βk|2, (64)

which is generally non-zero!

Recall that in flat spacetime, we were able to pick a natural set of positive- and negative-frequency mode

functions by solving the time-independent harmonic oscillator (for a real scalar field). And under Lorentz

transformations, all the positive-frequency modes stay positive-frequency, and all the negative-frequency

modes stay negative-frequency. This implies that the creation and annihilation operators are the same in

all inertial frames. Thus, every inertial observer will agree on what the vacuum state is, and how many

particles are around. This boils down to the existence of a timelike Killing vector ∂t in Minkowski spacetime

and all such Killing vectors are related by Lorentz transformations. The mode functions are eigenfunctions

of this Killing vector. But in the case of curved spacetime, there is generically no timelike Killing vector

to define positive- and negative-frequency modes, and there is an ambiguity in the choice of mode basis.

These different mode bases define different sets of creation and annihilation operators that are related by the

Bogolyubov transformations, which in turn define different vacua. In particular, as we saw, if one inertial

observer defines particles with respect to one set of modes vk and another observer uses a different set of

modes uk, they will typically disagree on how many particles are observed.

4 Unruh effect and Hawking radiation

The Unruh effect (1976) is manifested even in flat spacetime. It predicts that a uniformly accelerating

observer in the Minkowski vacuum state will observe a thermal spectrum of particles, while an inertial

observer would observe none. By explicit calculation it can be shown that the density of massless scalar

particles as seen by an accelerating observer follows the Bose-Einstein distribution, which is characteristic

of a thermal blackbody radiation with a temperature called the Unruh temperature. On the other hand,

the Hawking radiation (1974) is the blackbody radiation emitted by a static black hole (BH), as registered

by a stationary observer far away from the BH horizon. The two effects are tightly related to each other.

In fact, the Hawking radiation is just the Unruh effect with the equivalence principle applied to the BH

horizons. Here we will present an argument that leads to the Unruh temperature in Minkowski geometry

and the Hawking temperature in Schwarzschild geometry without doing any explicit calculation.

Recall that the BH geometry is described by the Schwarzschild metric

ds2 = −fdt2 +
1

f
dr2 + r2

(
dθ2 + sin θ2dφ2

)
, (65)
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where

f = 1− 2GM

r
= 1− rs

r
, (66)

with rs being the radius of the event horizon. Recall that there are two intrinsic geometric quantities

associated with the BH horizon: one is the area of a spatial section,

A = 4πr2s = 16πG2M2, (67)

and the other is the surface gravity,

κ =
1

2
f ′(rs) =

1

4GM
. (68)

In a static, asymptotically flat spacetime, the surface gravity is the acceleration of a static observer near the

horizon, as measured by a static observer at infinity.

Let us first consider the region near (but outside) the BH horizon. We may Taylor expand f around

r = rs:

f(r) ' f(rs)︸ ︷︷ ︸
=0

+f ′(rs)(r − rs) = f ′(rs)(r − rs). (69)

Then we introduce the proper distance ρ from the horizon:

dρ =
dr√
f

r→rs=
dr√

f ′(rs)(r − rs)
. (70)

Integrating both sides gives

ρ =
2√
f ′(rs)

√
r − rs. (71)

When r = rs, ρ = 0, corresponding to the horizon. So we can express f in terms of the proper distance ρ as

f(r) = f ′(rs)(r − rs) =

[
1

2
f ′(rs)

]2
ρ2 = κ2ρ2. (72)

Then the Schwarzschild metric near the horizon becomes

ds2 = −κ2ρ2dt2 + dρ2 + r2sdΩ2
2

= −ρ2dη2 + dρ2 + r2sdΩ2
2,

(73)

where we have defined η = κt = t
2rs

. You may recognize that the first two terms in the above expression is

the (1+1)d Minkowski metric in the Rindler form5. To see this, consider the 2d Minkowski spacetime

ds2M2
= −dT 2 + dX2. (74)

If we let X = ρ cosh η, T = ρ sinh η, we get

ds2M2
= −ρ2dη2 + dρ2, (75)

which is exactly the 2d Rindler spacetime. But since X2−T 2 = ρ2 ≥ 0, the Rindler coordinates only covers

the X ≥ 0 part of M2, i.e. region I as shown in Fig. 1. Note that the BH horizon ρ = 0 is mapped to the

light cones X = ±T , just like what we saw for the Schwarzschild geometry in the Kruskal coordinates (cf.

right panel in Fig. 1). Then the near-horizon BH geometry can be viewed as Rindler × S2.

A few remarks are in order. First, an observer at r = const. (r & rs) is mapped to an observer with

ρ = const. in a Rindler patch, that is, an observer in Minkowski spacetime following a hyperbolic trajectory,

X2 − T 2 = ρ2 = const. This corresponds to a uniformly accelerating observer in Minkowski spacetime.

5The Rindler coordinates serve as a proper frame for a uniformly accelerating observer, in which the proper time measured
by the accelerated observer coincides with the coordinate time.
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Figure 1: Left: Causal structure of 2d Minkowski spacetime in the Rindler form. Right: Causal structure of the full
Schwarzschild geometry.

Indeed, one can check that such an observer has a constant proper acceleration6 given by

a ≡ |a| = 1

ρ
=

√
f ′(rs)

2

1√
r − rs

. (76)

And furthermore, the acceleration seen by an observer at infinity O∞ would be

a∞ = a(r)
√
f(r) =

1

2
f ′(rs) = κ, (77)

which is exactly our interpretation of the surface gravity previously.

Now, to understand that the BH has a temperature (i.e. Hawking temperature), as viewed by a stationary

observer far away from the horizon, we will argue that the notion of a thermal state corresponds to the

periodicity in imaginary time, that is, by finding the period in the imaginary time, one can infer the

temperature of the state. The heuristic argument is as follows. Recall in quantum statistical mechanics, a

thermal state is described by the partition function, which is defined as

Z =
∑
j

e−βEj , (78)

where β = 1/T (kB = 1) and Ej is the energy of the state |j〉, an eigenstate of the Hamiltonian. So we can

rewrite the partition function as

Z =
∑
j

〈j|e−βH |j〉 = Tr
(

e−βH
)
. (79)

On the other hand, the propagator (2-point Green function) in quantum mechanics is

K(q′, t; q, 0) =
〈
q′
∣∣e−iHt∣∣q〉 . (80)

Suppose we want to recover the partition function in this formalism. We consider t to be complex parameter,

and consider it to be purely imaginary, so we can write t = −iτ , where τ is real7. Then

K(q′,−iτ ; q, 0) =
〈
q′
∣∣e−Hτ ∣∣q〉 =

∑
j

e−τEj 〈j|q〉
〈
q′
∣∣j〉 . (81)

6By definition, an observer’s proper acceleration is the 3-acceleration measured in the comoving frame.
7This is equivalent to a Wick rotation, where we transform from Minkowski space to Euclidean space.
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Setting q′ = q, τ = β and integrating over q, we get exactly the partition function∫
dq K(q,−iβ; q, 0) =

∑
j

e−βEj 〈j|
∫

dq |q〉 〈q||j〉 = Z. (82)

What this tells us is that a thermal state in statistical mechanics related to a quantum mechanical system

that evolves in an imaginary time t = −iτ , where τ is periodic: τ ∼ τ + β. This observation holds true in

QFT. To describe a system at finite temperature T , we analytically continue to the Euclidean signature,

t→ −iτ , and let τ to be periodic with period β = 1/T . Conversely, if the Euclidean continuation of a QFT

is periodic in the imaginary time direction, we conclude that the QFT is at a finite temperature.

With this in mind, we may analytically continue the Schwarzschild metric to Euclidean signature with

t→ −iτ :

ds2E = fdτ2 +
1

f
dr2 + r2dΩ2

2. (83)

Near the horizon, the metric becomes

ds2E = ρ2κ2dτ2 + dρ2 + r2sdΩ2
2 = ρ2dθ2 + dρ2 + r2sdΩ2

2, (84)

where

θ ≡ κτ =
τ

rs
. (85)

Note that the first two terms are just the polar coordinates in Euclidean R2. This metric has a conical

singularity unless θ is periodic in 2π, i.e. θ ∼ θ + 2π. Since the horizon is non-singular in Lorentzian

signature, it should also not singular in Euclidean. Therefore, τ must be periodic,

τ ∼ τ +
2π

κ
. (86)

Since t is the proper for an observer at r = ∞, by the argument above, this observer O∞ must feel a

temperature

T =
1

β
=

κ

2π
=

1

8πGM
. (87)

This is the famous Hawking temperature associated with the Hawking radiation. Similarly for the 2d Rindler

spacetime,

ds2 = −ρ2dη2 + dρ2
η→−iθ−→ ds2E = ρ2dθ2 + dρ2. (88)

As shown before, a uniformly accelerating observer in the Rindler spacetime follows a trajectory of constant

ρ, and so the local proper time of this observer is dτ2loc = ρ2dη2. Since θ must be period in 2π, η must also

be period in 2π, and therefore τloc must be period in 2πρ. So the Rindler observer feels a temperature

TRindler
loc =

1

2πρ
=

a

2π
, (89)

where we have used the relation a = 1/ρ in Eq. (76). This temperature is known as the Unruh temperature,

and is proportional to the observer’s proper acceleration.

11


	Quantum mechanics
	QFT in flat spacetime
	QFT in curved spacetime
	Unruh effect and Hawking radiation

