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(Weighted) MaxCut

• Graph: Set of vertices (V ) connected by (weighted) edges (E )

• MaxCut: Partition of vertices into two disjoint subsets (labeled by 0 and 1),
such that the total weight of the edges between the two subsets is maximized

• For equal-weight edges, the goal is simply to maximize the number of edges
connecting the two subsets.

= 0 = 1
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Input:
(Weighted) graph G = (V,E)

Output:
Maximum cut x ∈ (0, 1)n

x = [0, 1, 0, 1, 0]



QUBO

• Quadratic Programs: Optimize (maximize or minimize) a quadratic objective
function subject to linear constraints on the variables
e.g., minimize xTQx+ cTx

subject to Ax ≤ b

• Special case: Quadratic Unconstrained Binary Optimization (QUBO)
I Quadratic objective function
I No constraints on variables
I Binary variables

• QUBO examples
I MaxCut
I Number partitioning
I Graph coloring
I · · ·

Ruihao Li (CWRU) Introduction to QAOA QOSF Meeting 04/29/2022 3 / 11



MaxCut as QUBO

MaxCut

Weight matrix:

1

2 3

45

W =


0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0


Cost function:

C(x) =

n∑
i,j=1

Wijxi(1− xj)

QUBO

QUBO matrix and vectors:

ci =

n∑
j=1

Wij , Qij = −Wij

Cost function:

C(x) = xTQx+ cTx

=
n∑

i,j=1

Qijxixj +
n∑
i=1

cixi
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QAOA

• Quantum Approximate Optimization Algorithm (QAOA) first introduced in
Farhi, Goldstone and Gutmann (2014) [1]

• Finds approximate solutions to QUBO instances (e.g. MaxCut)

• Can be regarded as a special case of Variational Quantum Eigensolvers (VQE)

• Layerized variational form based on Trotterized adiabatic process (related to
adiabatic quantum computing)

• Key idea: encode the cost function of the optimization problem in the cost
Hamiltonian HC
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QUBO to Hamiltonian

Goal: Find the cost Hamiltonian operator HC that encodes the cost function
C(x), i.e.,

HC |x〉 = C(x) |x〉 , x = {0, 1}.

Using the fact that

Zi |x〉 = (−1)xi |x〉 = (1− 2xi) |x〉 =⇒ 1− Zi
2
|x〉 = xi |x〉 ,

we have

C(x) =
∑
i,j

Qijxixj +
∑
i

cixi

=⇒ HC =
∑
i,j

Qij

(
1− Zi

2

)(
1− Zj

2

)
+
∑
i

ci

(
1− Zi

2

)

=
∑
i,j

1

4
QijZiZj −

∑
i

1

2

ci +∑
j

Qij

Zi +
∑

i,j

Qij
4

+
∑
i

ci
2

.
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Trotterized AQC

Typical steps of Trotterized adiabatic quantum computing (AQC): [2]

• Prepare initial state as the highest energy state of some “mixer” Hamiltonian
(that does not commute with HC), HM =

∑
iXi, i.e., |ψ0〉 = ⊗i |+〉.

• Set the total Hamiltonian H(t) = f(t)HC + g(t)HM with slowly varying
control functions f(t) = t/T and g(t) = 1− t/T .

• Through adiabatic evolution, the system will end up in the highest energy
state of the cost Hamiltonian HC , which then solves the QUBO problem.

• In practice, to implement the adiabatic evolution, one decomposes the
time-evolution operator (for a time-dependent Hamiltonian) into a sequence
of small steps through the Trotter-Suzuki formula:

U(t) := T exp

[
−i
∫ T

0
H(t)dt

]
≈

k−1∏
a=0

exp [−iH(aτ)τ ]

=

k−1∏
a=0

exp [−if(aτ)HCτ ] exp [−ig(aτ)HMτ ].
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QAOA Variational Form

Inspired by Trotterized AQC, QAOA was designed to be a variational algorithm
with repeated cost and mixer layers.

. . .

. . .

. . .

. . .

|0〉 H

UC(γ1) UM (β1) UC(γp) UM (βp)

|0〉 H

|0〉 H

|0〉 H

p repetitions of alternating cost and mixer layers:

UC(γi) = e−iγiHC

UM (βi) = e−iβiHM
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Matrix Exponentiation

Recall that

HM =

n∑
i=1

Xi

HC =

n∑
i,j=1

1

4
QijZiZj −

n∑
i=1

1

2

ci + n∑
j=1

Qij

Zi +
 n∑
i,j=1

Qij
4

+

n∑
i=1

ci
2


Then upon matrix exponentiation, the mixer and cost layers become

UM (β) = e−iβHM =

n∏
i=1

RXi(2β)

UC(γ) = e−iγHC =

n∏
i,j=1

RZiZj

(
1

2
Qijγ

) n∏
i=1

RZi

−
ci + n∑

j=1

Qij

γ
.

RZZ(θ) =
RZ(θ)
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QAOA Workflow

1 Initialize β and γ with suitable real values.

2 Prepare the state |ψ(β,γ)〉 using the QAOA circuit and measure it in the
computational basis.

3 Compute the expectation value 〈ψ(β,γ)|HC |ψ(β,γ)〉.

4 Find a new set of parameters (βnew,γnew) with a classical optimization
algorithm (e.g., gradient descent) and use this new set of parameters in the
QAOA circuit.

5 Repeat steps 2 - 4 until some suitable convergence criterion is met.

6 The solution is then approximated as |ψ(βopt,γopt)〉 which maximizes
〈ψ(βopt,γopt)|HC |ψ(βopt,γopt)〉
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Materials presented also borrow from:

• Qiskit Global Summer School 2021, Introduction to the Quantum
Approximate Optimization Algorithm and Applications.

• Learn Quantum Computation using Qiskit, Ch. 4.1.3, Solving combinatorial
optimization problems using QAOA.
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https://learn.qiskit.org/summer-school/2021/lec5-2-introduction-quantum-approximate-optimization-algorithm-applications
https://learn.qiskit.org/summer-school/2021/lec5-2-introduction-quantum-approximate-optimization-algorithm-applications
https://qiskit.org/textbook/ch-applications/qaoa.html
https://qiskit.org/textbook/ch-applications/qaoa.html

