Tunable Spin-charge Conversion in Topological Dirac Semimetals

In collaboration with: Pengtao Shen & Shulei Zhang Department of Physics, Case Western Reserve University, USA

Based on arXiv: 2110.11823

N52, APS March Meeting 2022, Chicago, IL 03/16/2022

think beyond the possible"

This presentation was made possible, in part, through financial support from the School of Graduate Studies at Case Western Reserve University.

Spin-charge conversion in TDSMs

- Main idea:
 - B = 0: intrinsic spin Hall effect (charge-to-spin conversion)
 - $B \neq 0$: anomalous Hall effect (spin-to-charge conversion)
- Features of spin-charge interconversion in topological Dirac semimetals (TDSMs):
 - Interplay of band topology and symmetry breakings \Longrightarrow tunability via external fields
 - Low density of states near band crossings (Dirac points) \Longrightarrow large spin Hall angles

Topological Dirac semimetals (TDSMs)

 Host Dirac points (4-fold degenerate) protected by time-reversal + inversion + uniaxial rotation symmetries

Yang and Nagaosa, Nat. Commun. 5, 4898 (2011)

A pair of Dirac points on the rotation axis

• Class-I TDSM materials: e.g., Cd₃As₂ (C₄ symm.), Na₃Bi (C₃ symm.)

Ruihao Li (CWRU)

Spin Hall effect in TDSMs (B = 0)

Low-energy Hamiltonian for a class-I TDSM:

Wang et al., PRB **85**, 195320 (2012); Wang et al., PRB **88**, 125427 (2013)

$$H_{D}(\mathbf{k}) = \begin{pmatrix} M(\mathbf{k}) & Ak_{+} & 0 & 0 \\ Ak_{-} & -M(\mathbf{k}) & 0 & 0 \\ 0 & 0 & M(\mathbf{k}) & -Ak_{-} \\ 0 & 0 & -Ak_{+} & -M(\mathbf{k}) \end{pmatrix} = H_{W}^{\uparrow} \oplus H_{W}^{\downarrow}$$
spin-down
spin polarization
spin Berry curvature
Spin Hall current: $\mathbf{j}^{z} = \frac{e}{\hbar} \sum_{s,n} s \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \mathbf{E} \times \mathbf{\Omega}_{n}^{s}(\mathbf{k}) f_{n\mathbf{k}}^{0} = \sigma_{SH}^{0}(\mathbf{E} \times \hat{\mathbf{z}}) \quad (s = \pm 1)$
Anisotropic SHE

with spin Hall conductivity (SHC)

$$\sigma_{\rm SH}^0 = \frac{ek_D}{\pi^2\hbar}$$

 $2k_D$ = separation of Dirac points

0

Charge Hall current:
$$\mathbf{j} = \frac{e}{\hbar} \sum_{s,n} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \mathbf{E} \times \mathbf{\Omega}_n^s(\mathbf{k}) f_{n\mathbf{k}}^0 =$$

Pure spin current!

Ruihao Li (CWRU)

B in arbitrary directions

 \sim effective Landé g-factor \approx 30

• Zeeman coupling: $H_Z = \tilde{g}\mu_B(\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B}$

$$= \tilde{g}\mu_B \begin{pmatrix} B_z & 0 & B_- & 0\\ 0 & 2B_z & 0 & 0\\ B_+ & 0 & -B_z & 0\\ 0 & 0 & 0 & -2B_z \end{pmatrix}$$

z-component of spin is NOT conserved

 \Rightarrow unconventional SHC tensors $\sigma_{xy}^x, \ \sigma_{xy}^y \neq 0$

• Kubo-Greenwood formula:

$$\begin{split} \sigma_{ab}^{i} &= -e\hbar \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{n} f_{n\mathbf{k}}^{0} \sum_{n' \neq n} \frac{2 \operatorname{Im}[\langle n\mathbf{k} | J_{a}^{i} | n'\mathbf{k} \rangle \langle n'\mathbf{k} | v_{b} | n\mathbf{k} \rangle]}{(\varepsilon_{n'\mathbf{k}} - \varepsilon_{n\mathbf{k}})^{2} + \Gamma^{2}} \\ \sigma_{ab} &= -e\hbar \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \sum_{n} f_{n\mathbf{k}}^{0} \sum_{n' \neq n} \frac{2 \operatorname{Im}[\langle n\mathbf{k} | v_{a} | n'\mathbf{k} \rangle \langle n'\mathbf{k} | v_{b} | n\mathbf{k} \rangle]}{(\varepsilon_{n'\mathbf{k}} - \varepsilon_{n\mathbf{k}})^{2} + \Gamma^{2}} \\ J_{a}^{i} &= \frac{1}{2} \{v_{a}, \sigma_{i}\}, \quad v_{a} = \frac{\partial \varepsilon(\mathbf{k})}{\hbar \partial k_{a}} \end{split}$$
 band broadening factor ~ $\hbar/\tau \approx 10 \text{ meV}$

Ruihao Li (CWRU)

Spin/charge Hall currents

$$\begin{aligned} \mathbf{Q}^{x(y)} &\approx \chi^{x(y)} B_z B_{x(y)} (\mathbf{E} \times \hat{\mathbf{z}}) \\ \mathbf{Q}^z &\approx \left[\sigma_{\mathrm{SH}}^0 + \left(\chi_{\perp}^z B_{\perp}^2 + \chi_{\parallel}^z B_z^2 \right) \right] (\mathbf{E} \times \hat{\mathbf{z}}) \\ \mathbf{j} &\approx \kappa B_z (\mathbf{E} \times \hat{\mathbf{z}}) \end{aligned}$$

- Electric tunability: band topology
- Magnetic tunability: symmetry breaking [also seen in spin currents in ferromagnets induced by magnetization; see Amin et al., PRB 99, 220405 (2019)]

SHC **B**-dependence

z≮

AHC **B**-dependence

 $\sigma_{xy}(\mathbf{B}) \sim B_z \sim B \cos \theta$

Spin-charge conversion efficiency

 σ_0 : intrinsic SHC when B = 0

 σ_{xx} : longitudinal conductivity

Summary & Outlook

• Take-home message:

Topological Dirac semimetals can provide another platform for realizing electrically & magnetically tunable spin-charge conversion arisen from the interplay of unique band topology and symmetry breaking.

- No magnetic field: pure spin current;
 With external magnetic field: spin-to-charge conversion
- Spin-charge conversion efficiency can be enhanced by increasing the magnetic field strength.
- Possible future directions: effects of tilting and energy displacement of the Dirac cones; orbital contribution of magnetic field; etc.

Back-up Slides

Tunability via external magnetic field

- Spin mixing
- Symmetry breaking

B along z-direction

SHC in TDSMs and Z₂ invariant

High-field behavior (AHC)

Magnitude dependence

Ruihao Li (CWRU)